AudioCommons

D2.5 Service Integration Technologies Zg 9

audio
—nit G o
commons

Deliverable D2.5
Service Integration Technologies

Grant agreement nr

Project full title
Project acronym
Project duration
Work package
Due date
Submission date
Report availability
Deliverable type
Task leader
Authors

Document status

688382

Audio Commons: An Ecosystem for Creative Reuse of Audio Content
AudioCommons

36 Months (February 2016 - January 2019)

WP2

28 April 2017 (M15)

28 April 2017 (M15)

Public (X), Confidential ()

Report (), Demonstrator (), Other (X)

QMUL/MTG-UPF

Frederic Font (MTG), Alastair Porter (MTG), Damir Juric (QMUL), George
Fazekas (QMUL)

Draft (), Final (X)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 1 of 15

AudioCommons
D2.5 Service Integration Technologies

Table of contents

Table of contents
Executive Summary
1 The Audio Commons Mediator
1.1 Concept and main functionalities
1.2 Implementation
1.2.1 Handling of requests and responses
1.2.2 Integration of third party services
1.3 Models for the Audio Commons Ecosystem architecture
2 Experimental Audio Commons Mediator using semantic web technologies
2.1 Graph database
2.2 Definition of third party services
2.2.1 Experimental search service

3 Conclusions

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

A A WD

10
10
11

13

15

Page 2 of 15

AudioCommons
D2.5 Service Integration Technologies

Executive Summary

This deliverables summarises the service integration technologies upon which the Audio Commons
Ecosystem is built. These technologies allow the interconnection of services and tools in the
ecosystem. The code for this technologies is open source, released under an Apache 2.0 license and
available at this public Github repository: https://github.com/AudioCommons/ac-mediator

In the current prototype of the Audio Commons Ecosystem, service integration technologies consist
of a web application which mediates between applications (i.e. tools) and the services connected to
the ecosystem. This web application is called the Audio Commons Mediator and represents the very
core of the Audio Commons Ecosystem.

In this document we describe the main components of the mediator, justify some of the design
decisions that were made and describe current plans for further improvements to be made until the
end of the AudioCommons project. The actual technologies (which is the objective of this
deliverable) are made available as source code provided in the aforementioned repository and as the
actual functional web application deployed at https://m.audiocommons.org.

In addition to the description of the current prototype of the Audio Commons Mediator, we also
describe the prototype implementation of experimental mediator components which are based on
the use of semantic web technologies. Future versions of the main user facing Audio Commons
Mediator will iteratively incorporate more semantic technologies based on the experimental mediator
outlined here.

This deliverable is complementary to deliverables D2.4 and D2.6, which describe the Audio Commons
API specification and present draft guidelines for adding new services to the Audio Commons
Ecosystem (respectively).

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 3 of 15

https://github.com/AudioCommons/ac-mediator
https://m.audiocommons.org/

AudioCommons
D2.5 Service Integration Technologies

1 The Audio Commons Mediator

1.1 Concept and main functionalities

The Audio Commons Mediator lies in the very core of the Audio Commons Ecosystem and is the
component that allows the interoperation between the services and tools (applications) of the
ecosystem. All communications between services and tools in the Audio Commons Ecosystem are
done via HTTP requests and service requests are negotiated by the Audio Commons Mediator. The
HTTP requests must follow the Audio Commons APl Specification (see Deliverable D2.4 API
Specification). The Audio Commons API specification is implemented by the Audio Commons
Mediator.

With very few exceptions, all communications that happen
inside the Audio Commons Ecosystem are expected to go
through the Audio Commons Mediator (see figure on the

right)'. In this way, Audio Commons is able to provide a Application
unified and controlled interface to interact with the

different services which are part of the Audio Commons
Ecosystem. This facilitates the task of developing
applications which, for example, consume content from
several content providers in the Audio Commons
Ecosystem. It also facilitates the management of Audio
Commons user accounts and the user authentication with
third party services.

https

The current implementation of the Audio Commons
Mediator is already deployed and working online at
https://m.audiocommons.org. It features a minimal
implementation of the essential services of the Audio
Commons Ecosystem, incorporating basic integrations of
content providers (Jamendo, Freesound and Europeana),
and one license provider (Jamendo Licensing). The code
of the mediator is open source and released under an
Apache 2.0 license. It can be found at a public Github
repository?.

@
a
e

Your online Another
service service e

The main functionalities of the Audio Commons Mediator are the following:

e Manage user accounts: Users of all kinds (i.e. application developers, service providers,
content creators and content users) need to create an Audio Commons user account in order
to, for example, request credentials for developing and application or authenticate in third
party applications with their Audio Commons account (i.e. ‘login’ with Audio Commons). The
Audio Commons mediator is in charge of managing these user accounts and allowing users
to link their Audio Commons user accounts with third party services’ user accounts, which is
required in some cases. For example, through the mediator one can link his Audio Commons
account with his Freesound account, which will allow to download original quality Freesound
content while using the Audio Commons API. Linking Audio Commons user accounts with

" This does not necessarily mean that the mediator can’t be distributed in the ecosystem, see Section
1.3 for more information.
2 https://qithub.com/AudioCommons/ac-mediator

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 4 of 15

https://m.audiocommons.org/
https://github.com/AudioCommons/ac-mediator

AudioCommons
D2.5 Service Integration Technologies

third party services’ user accounts is done via the mediator's web interface
(https://m.audiocommons.org/link_services/).

e Provide endpoint for the Audio Commons API: The Audio Commons Mediator implements
the Audio Commons API as described in its specification (see Deliverable D2.4). This allows
third party applications to make HTTP requests to the mediator (using as base URL
https://m.audiocommons.org/api/vl) and interact with the services integrated with the
ecosystem.

e Service orchestration: The requests that are made to the Audio Commons Mediator need to
be interpreted and then the mediator needs to decide to which third party services the
requests will be forwarded. For example, if an application requests a licensing URL for a given
Audio Commons audio resource (identified by an Audio Commons Resource Identifier, or
acid), the mediator will guess which services connected to the ecosystem can provide a valid
response and then forward the request to them. To do that forward step, the Audio Commons
Mediator needs to have a knowledge about which are the available services, what
functionalities do they provide, and how to communicate with them.

e Log activity in the ecosystem: Because all the requests go through the Audio Commons
Mediator, the mediator is also in charge of logging all the activity in the ecosystem. Having
the activity logged will allow a monitoring of the system that can be used for many purposes
such as tracking usage of services and content licenses, provide extra services such as
recommendation, identification of behaviour patterns that can allow future improvements in
the ecosystem and also identification of possible problems and debugging. The current
version of the Audio Commons Mediator does not implement the logging functionality.
However, we already performed a number of experiments of such functionality using
semantic web technologies (see Section 2 of this deliverable). Logging will facilitate
provenance tracking for data management and potentially rights tracking purposes.

1.2 Implementation

The Audio Commons Mediator is implemented using the Python programming language and the
popular Django® web framework. It features a standard relational database using PostgreSQL*. As
abovementioned, the source code is open source, released under Apache 2 license and available at
https://qithub.com/AudioCommons/ac-mediator.

In the figure below it is shown a block diagram of the architecture of the mediator in its current
implementation. The most relevant parts of it correspond to the implementation of the pair of
RequestDistributor and RequestAggregator (which handle incoming requests and outgoing
responses), and the classes of the acservice Python package which allow the communication of third
party services with the mediator.

1.2.1 Handling of reguests and responses

As mentioned above, the Audio Commons Mediator handles requests made by applications (i.e. at
API endpoints) and decides to which services this requests should be forwarded. This is an important
part of service orchestration as it distributes load to several components of the ecosystem. The way
in which this part of service orchestration is implemented in the current mediator fulfils the most

8 https://www.djangoproject.com/
4 https://www.postgresal.org/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 5 of 15

https://www.postgresql.org/
https://www.djangoproject.com/
https://github.com/AudioCommons/ac-mediator
https://m.audiocommons.org/link_services/
https://m.audiocommons.org/api/v1

AudioCommons
D2.5 Service Integration Technologies

basic needs. In essence, services declare which AP/ components they implement (see Section 1.3.2)
and the mediator forwards incoming requests to all the third party services that support the requested
component. For example, a text search request will be forwarded to all the services that support the
text search component. This happens in the RequestDistributor® of the Audio Commons Mediator. In
the future we envision a more advanced solution for distributing requests based on declarative
mappings and knowledge about service capabilities represented in OWL ontologies.

Database and models Basic web endpoints
- Account model ApiClient Iregistration/, /login/,
User data, linked services Audio Commons regis 7?0';0““'” ogin/,
credentials developer credentials User auth
sQL
Database ServiceCredentials
Access tokens given by .)
services for a given user _ Nlink_services/
Link existing services
lauthorized_tokens/
a h B M thorized tok
BaseACService ACSearchMixin anagelaionzecliosens
Service info, description, Translate service specific
urls, logos search and AC search
e = == ~ Idevelopers/clients/
ACServiceAuthMixin Manage app models, see
Implements auth-related usage stats of credentials
Celery __ aspects of the service)
Workers
Perform s Idocs/
requests (BaseACService) ACLicenseMixin API and Services Integration
Service info, description, Get license url for a given documentation
L urls, logos D, content id REDIS Store
(N .. Share
IA(:ISerw::el\ut:]hM:xtlnd response data Jadmin/
mplements auth-relate across Django admin
aspects of the service processes
G J
RequestDistributor ResponseAggregator
Interpret request and Collect responses from the different
distribute (direct) it to the services and aggregate them in a single
corresponding services response to be returned (or pulled)
lapilservices/ lapilsearch/text/ lapillicense/ lapilol
Description of services TextSearch License API OAuth views

Example API endpoints

A full resolution version of this image here

Service orchestration

The RequestDistributor forwards a single incoming request from an application to N third party
services. The third party services might behave in completely different ways and take different time to
respond, yet we want to optimize the time passed until the mediator can provide a response to the
application. In order to solve that problem all the requests to third party services are forwarded in
parallel (i.e. if the RequestDistributor decides to forward a request to 3 services, the mediator
forwards the 3 requests in parallel). Immediately after forwarding the requests, a response is given to
the original application with a URL that that application can use to retrieve the “real” results (as
explained in Deliverable D2.4, API specification, we call this an aggregated response). As soon as a

5 https://github.com/AudioCommons/ac-mediator/blob/master/api/request_distributor.py

* Kl This project has received funding from the European Union’s Horizon 2020
S research and innovation programme under grant agreement N° 688382

Page 6 of 15

https://github.com/AudioCommons/ac-mediator/blob/master/api/request_distributor.py
https://docs.google.com/drawings/d/1t6YMVLF8XLWcwpYGePUS54GbhdxadfSJ3Gk_1xsdNKY/pub?w=1375&h=1089

AudioCommons
D2.5 Service Integration Technologies

response is received from a third party service, its contents are processed by the mediator and stored
in a shared memory store (see REDIS store in diagram). The application that made the original request
is expected to pull the aggregated response from the mediator in an iterative way until all expected
responses from third party services have been received. The task of aggregating the received
responses and storing them in the common store is carried out by the RequestAggregator® of the
mediator. The following diagram exemplifies the described request/response flow:

Search request: “dogs’ Search request: "degs”
Aggregated response URL
Third party
“Got response?” service A :
‘Received 0 of 2 responses” Third party 5
. Search results A service B :
Audio)
Application Commons ‘ E
\Got response?” Mediator
“Received 1 of 2 responses”
Search results B

“Got response?”

“Received 2 of 2 responses”

1.2.2 Integration of third party services

Third party services can be integrated and “made available” through the Audio Commons
Mediatorwithout significant architectural change at any provider. The task can be accomplished by
providing a Python object which is known by the mediator and which knows how to “talk” to the third
party service. This object must extend the BaseACService class defined in the acservice’” Python
package of the Audio Commons Mediator. The Python object representing a service is in charge of
translating incoming application requests to the format of the third party service (i.e. translating from
Audio Commons API specification to individual services’ own API specification), and of interpreting
the responses of the third party services and transforming them to a unified format across services
(i.e. translating from individual services’ own API specification to Audio Commons API specification).

In order to carry out these tasks, the Python object can implement a number of different AP/
components which correspond to the different potential services defined in the Audio Commons API
specification. Technically, the way in which a service declares that it implements a number of
components is by inheriting from a number of “ACServiceMixins” defined in the acservice package.
For example, the current implementation of the Freesound service inherits from BaseACService, from
ACServiceAuthMixin, from ACServiceTextSearchMixin and from ACDownloadMixin. By inheriting from
these classes and implementing a number of required methods (see Deliverable 2.6), the Freesound
service is declaring that it supports Search component and Download component (besides the
mandatory “base” and authentication components). Using this information, the RequestDistributor
can understand what each service is capable of and make decisions about how to distribute requests.

6 https://github.com/AudioCommons/ac-mediator/blob/master/api/response_aggregator.py
7 https://github.com/AudioCommons/ac-mediator/tree/master/services/acservice

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 7 of 15

https://github.com/AudioCommons/ac-mediator/blob/master/api/response_aggregator.py
https://github.com/AudioCommons/ac-mediator/tree/master/services/acservice

AudioCommons
D2.5 Service Integration Technologies

Future evolutions of the RequestDistributor and the acservice package will explore the use of
semantic technologies to perform service orchestration in a richer way which also allows new
services to be deployed to the ecosystem in an even easier way.

More information about how the acservice package should be used to declare new third party
services can be found in Deliverable 2.6, Service Integration Guidelines. Full examples of already
implemented acservice objects for Freesound, Jamendo and Europeana can be found in the mediator
source code repository®.

1.3 Models for the Audio Commons Ecosystem architecture

In the above sections we have given some details about the architecture of the Audio Commons
Mediator and how it interacts with third party services. In the current implementation and therefore in
the current prototype of the Audio Commons Ecosystem, the Audio Commons Mediator is
implemented as a central service that operates at the core of the ecosystem. However, during the
design phases of the mediator we envisioned an alternative architecture in which the Audio Commons
Mediator component is replicated in each of the third party services and does not exist in a “single”
central service.

With this idea in mind, we proposed three ecosystem architecture models (Model A, B and C) that are
illustrated in the pictures below. Model A is the most centralised one and the one currently
implemented and deployed, while Model C is the most distributed. In any case, developers should be
able to access any instance of the Audio Commons Mediator indistinctly and obtain the same results.

The three models could be seen as evolution steps that we can further investigate as the project
evolves. The full implementation of Models B and C is subject to the feasibility and resulting
complexity of them as compared to the complexity of developing and maintaining a single central
service (e.g. in a distributed system we would still need to share things like user accounts and the
logging backend). Models B and C could also raise other issues like third party services not willing to
run Audio Commons Mediator code in their infrastructure. Nevertheless, future plans for the Audio
Commons Mediator include the exploration of such alternative ecosystem architectures.

Model A
Service e
- AG
“adagior”
: AC AudioCommons | .
Service “adapicr” it Consumer
J om
| “adapior”
Service o

8 https://github.com/AudioCommons/ac-mediator/tree/master/services/3rd_party

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 8 of 15

https://github.com/AudioCommons/ac-mediator/tree/master/services/3rd_party

AudioCommons

D2.5 Service Integration Technologies

Model B

te——— Consumer

Model C

AC
Service adapioc [~
S~
~—_
AC AudicCommens
Service “adapior mediator
=
/
4"/
-
—~
Service il |
AC
2 “Rdapece
Service ,
medator
Y
AC
Service —a
o
v
o
AC
- “adaptor
Servica o
madistor

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Consumer

Page 9 of 15

AudioCommons
D2.5 Service Integration Technologies

2 Experimental Audio Commons Mediator
components using semantic web technologies

The Audio Commons Mediator as described in the above sections and as currently implemented and
deployed for the first prototype of the Audio Commons Ecosystem makes only limited use of of
semantic web technologies to perform service orchestration and communication with third party
services. Because the use of such technologies in production-ready systems is not as widespread as
the standard approaches followed in the current implementation, we decided to first implement a
functional user facing deployment version of the mediator which implements the main infrastructure
and components (such as the requests and responses flow). In parallel to that development, we
worked with an alternative prototype Audio Commons Mediator fully integrated with the Audio
Commons Ontology and that allowed us to start experimenting with service orchestration based on
semantic web technologies. What follows is a description of the design decisions behind the
semantic-web based Audio Commons Mediator. The code of this mediator can be found in the
following Github public repository: https://qithub.com/damodamr/ac-webServies.

2.1 Graph database

The Semantic Audio Commons Mediator is implemented using the Python Flask framework® and the
Neo4J graph database' (as opposed to the PostgreSQL database of the production mediator). The
Semantic Audio Commons Mediator is fully tied to the Audio Commons Ontology and all objects and
instances that interact in it are represented using ontological concepts in the graph database.

For example, in accordance with Audio Commons ontology user node created in the AC database is
labelled “OnlineMusicAccount”. Every action carried inside the AC system, by this account, will be tied
to this node. Actions in this case represent various services that are and will be implemented in AC
(like search, upload, sound analysis, etc.). The figures below show how edges between user node and
the nodes carrying data about the user are connected with edges that are labelled in accordance with
AC ontology.

il I—— Q Ay schema:afiiliation Q

° http://flask.pocoo.org/
10 https://neo4j.com/product/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 10 of 15

https://github.com/damodamr/ac-webServies
http://flask.pocoo.org/
https://neo4j.com/product/

AudioCommons
D2.5 Service Integration Technologies

2.2 Definition of third party services

The Audio Commons mediator contains a list of Audio Commons services. For a service to become
an Audio Commons service it is necessary to:

e Add the service to the AC mediator repository
e Describe the service inputs and outputs
e Use labels described in Audio Commons ontology whenever it is possible

Adding the new service to Audio Commons repository requires a knowledge of Audio Commons
ontology. It is important that every new service in AC mediator repository is properly classified. As
shown in the figure below, services like search or upload are defined as subclasses of an Audio
Commons ontology action class.

wasDerivedFrom

v/

OnlineMusicAcoout ; 4
was ._N’ 2 tedTo
g X
wasGeneratedBy
e [
actedOnBeha \ y 4
wasAssociatgdWith \\ . p g
Activity
started At Tinde f \ \ 11dedAt'l"‘|>1‘iié~-.,__> e
/) { odBy i GenericAction
xsd:dateTime waslnformedBy xsd:dateTime

Audio Commons Actions

More specifically, actions that are implemented in this prototype (search, upload, etc.) are web service
related actions, so that is the reason why they are defined as subclasses of a WebServiceAction class
in Audio Commons ontology (see figure below). This definition makes these actions fundamentally
different from other actions that can be carried out on an audio source (like production or licensing
actions).

This project has received funding from the European Union’s Horizon 2020 P 11 0f 15
research and innovation programme under grant agreement N° 688382 age 0

AudioCommons
D2.5 Service Integration Technologies

. schema:Rating

7 @ muto:Tagging

@ WebServiceActio

B @ SearchAction

oS

. owI:Thing l—(>—[@ Action \—D—[. IPActions l ® wiiteCommentAct

o0

] - -
® s;°d“°“°”A°t'° ® UploadFileActio

A new service provider who wants to add services to Audio Commons mediator repository will have
to carry on an analysis of its existing services and define how those services will communicate with
other Audio Commons services. This guideline is focused on inputs and outputs of web services and
how these messages are represented in AC mediator. The following figure shows potential services
that could be implemented in AC mediator and their ontological classes.

group_by_pack

content-based
descriptors

analysis_file

wasAssociatedWith

-
B |

100000000008

geotag

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 12 of 15

AudioCommons
D2.5 Service Integration Technologies

Services are grouped depending on what object (Web resource) they use/manipulate. In the figure
above we see two groups of services where the group on the left side of the figure represents
services that are manipulating an AudioFile (again concept from AC ontology) and the group of
services on the right that are providing the search functionality. All of these services are always
associated with a certain OnlineMusicAccount. Also, services differ in an output that they produce
(services are usually producing different kind of documents like list, dictionaries, etc.).

This kind of analysis is important for the mediator in case of service orchestration involving a large
number of services. If services are manipulating the same type of resource and are producing the
same type of document / response, that means that they can be mutually interchanged and still
produce a required goal.

2.2.1 Experimental search service

One of the most important and most used service in Audio Commons ecosystem is service of
searching audio repositories. To simulate the actions that the potential users will carry inside Audio
Commons ecosystem a prototype interface is developed where user can type a query and such query
will be used as an input for services defined in AC repository.

When the search action is triggered the mediator will create data in the graph database that will
describe the provenance of the action. Created data (a node in the graph) will contain all the relevant
information about the action including its description, agents involved and objects produced. See the
following code examples for the definition of a node that will be created when service that provides
the searching of Freesound or Jamendo repository has been called:

search = Node (search = Node (
"Action", "Action",
id=str (uuid.uuid4()), id=str (uuid.uuid4()),
timestamp=timestamp (), timestamp=timestamp (),
date=date(), date=date(),
description="Text Search Freesound",

: description="Search Jamendo",
provider = "Freesound",

4 actionDesc="SearchAction",
actionDesc="SearchAction",

hasInputMessage=stateO,
hasMethod="GET",
hasAddress="URITemplate",

hasInputMessage=query,
hasMethod="GET",
hasAddress="URITemplate",
hasOutputMessage="mo:MusicalBuildingBlock", hasOutputMessage="mo:MusicalWork",
query=query, query=state0,

Search actions (as well as other actions) are related to a particular user account. The figure below
shows an excerpt of a graph surrounding a particular user node and displaying his interactions with
the Audio Commons Mediator.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 13 of 15

AudioCommons
D2.5 Service Integration Technologies

Text Search Text Search
Freesound Freesound

Upload File
Freesound

Text Search -ll-f’d Searc! dh
reesoun
Freesound Text Search
Freesound
g Text Search
Freesound

Upload File
Freesound §

Text Search

Text Search ;
Freesound ° z 3 Freesound

= ‘ \ gl Text Search

8 : 52 Freesound

Text Search
Freesound

B Text Search
== Freesound
Text Search

Text Search 4
Freesound s g
2¢) >, Freesound
: Upload File
i Freesound

Text Search
Freesound
Text Search

Text Search
Freesound Freesound

Text Search
Freesound Text Search
Freesound
Text Search
Freesound

Upload File
Freesound Text Search
Freesound

Types of actions carried by a test user (andy) in AC mediator

Because the data about the actions that are being carried out inside the AC ecosystem are being
saved into a graph it is possible to get some of the interesting insights into services usage and use

this information to build, for example, recommendation services.

This project has received funding from the European Union’s Horizon 2020

- research and innovation programme under grant agreement N° 688382

Page 14 of 15

AudioCommons
D2.5 Service Integration Technologies

3 Cconclusions

In this deliverable we have summarised the main concepts and implementation aspects behind the
Audio Commons Mediator that is at the core of the Audio Commons Ecosystem. A working version of
the Audio Commons Mediator is deployed at https://m.audiocommons.org, and can effectively be
used to build prototype applications that access the current Audio Commons Ecosystem prototype
and that interact with services like Freesound and Jamendo.

Besides the functional and “production-ready” implementation that we have developed and deployed,
we have also shown experimental work that we have done with a fully semantic-web based prototype
mediator. The Audio Commons Mediator will continue evolving during the next phases of the project
together with the Audio Commons API. During this evolution our plan is to progressively incorporate
relevant semantic technologies into the mediator (drawn from the experiments with a semantic
mediator) and deeply integrate the Audio Commons Mediator with the Audio Commons Ontology.
This will include the use of an API response format that facilitates an advanced way of consuming
data from the AC end-ponts tied with the AC Ontology. For more specific details on other plans for
future improvements we refer the reader to the conclusions section of Deliverable D2.6, Service
integration draft guidelines.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 15 of 15

https://m.audiocommons.org/

