AudioCommons

D2.6 Service Integration Draft Guidelines

audio
—nit G o
commons

Deliverable D2.6
Service Integration Draft Guidelines

Grant agreement nr

Project full title
Project acronym
Project duration
Work package
Due date
Submission date
Report availability
Deliverable type
Task leader
Authors

Document status

688382

Audio Commons: An Ecosystem for Creative Reuse of Audio Content
AudioCommons

36 Months (February 2016 - January 2019)
WP2

28 April 2017 (M15)

28 April 2017 (M15)

Public (X), Confidential ()

Report (), Demonstrator (), Other (X)
QMUL/MTG-UPF

Frederic Font

Draft (), Final (X)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 1 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

Table of contents

Table of contents
Executive Summary
1 Guidelines for integrating services in the Audio Commons Ecosystem
1.1 Architecture of the ecosystem and the Audio Commons Mediator
1.2 Adding new services to the ecosystem
1.2.1 Base component
1.2.2 Authentication component
1.2.3 Search component
1.2.4 Download component
1.2.5 Licensing component
1.2.6 Configuring a service
1.2.7 Service description

2 Conclusions and future directions

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

A A WD

13
14
14
15
16

Page 2 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

Executive Summary

This deliverable presents the draft guidelines for integrating new services in the Audio Commons
Ecosystem. The prototype of the Audio Commons Ecosystem which has been deployed at the time of
this writing, allows the addition of new services by the implementation of service plugins developed
using the Python programming language. In this deliverable we explain how to implement such
services plugins and provide implementation examples of the already implemented plugins included
in the Audio Commons Mediator codebase. At the end of this deliverable we describe the future
improvements in service integration technologies that we expect to carry out as the Audio Commons
project evolves.

This deliverable complements deliverables D2.4 and D2.5, which respectively describe the Audio
Commons API specification and the technologies developed for service integration (the Audio
Commons Mediator).

The version of the guidelines presented in this deliverable is expected to be a draft version. At the end
of the project, a final version of this document is expected to be delivered (D2.7) which will include the
final and full guidelines for service integration.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 3 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

@

1 Guidelines for integrating services in the
Audio Commons Ecosystem

1.1 Architecture of the ecosystem and the Audio Commons
Mediator

The Audio Commons Ecosystem (a diagram of which is depicted below) consists of a number of
interconnected services and tools which are used by content creators and content users. In the core
of the ecosystem there is the Audio Commons Mediator which is the component that allows the
interoperation between the services and tools (applications) of the ecosystem. All communications
between services and tools in the Audio Commons Ecosystem are done via HTTP requests and are
mediated by the Audio Commons Mediator. The HTTP requests must follow the Audio Commons API
Specification (see Deliverable D2.4 API Specification), which is implemented by the mediator (see
Deliverable 2.5 Service Integration Technologies).

License provider

Creative e
Content Commons Creative Commons audio vid
i e
creator audio content Content provider content enhanced with ogame
qenerated metadata developers

(music pieces)

e.g., individual
user

Music producers
Content provider
(music samples and
non-musical content)

Sound designers

Embeddable tools
(Audio plug-ins, sdks...)

Analysis provider
(use Audio Commons
compatible annotation tools)

s
|
3
=
2
]
E
E
3
o
3
<

'
/

L
Tool developers Content users

Content creators

Share

|

 /

Service providers

In order to integrate a service with the Audio Commons Ecosystem, the mediator needs to know what
are the characteristics of that service and how to communicate with it. In essence, the mediator
needs to know how to make requests to that service and how to interpret its responses. Therefore, a
service that wants to join the Audio Commons Ecosystem needs to expose an HTTP endpoint
through which the mediator will be able to communicate.

If this requirement is met, a new service can be added to the ecosystem by implementing a plugin
which can be loaded by the Audio Commons Mediator and which tells the mediator what are the
capabilities of the service and how to interact with it. This plugin needs to be implemented as a class
using the Python programming language which includes a number of specific methods to
communicate with the mediator. Once this class is implemented, it can be added into a Python
module and included in the codebase of the Audio Commons Mediator so it can be loaded and

This project has received funding from the European Union’s Horizon 2020 P 40f18
research and innovation programme under grant agreement N° 688382 age 2o

AudioCommons
D2.6 Service Integration Draft Guidelines

integrated with the ecosystem. The following section explains how to implement such Python class
so that it is compatible with the Audio Commons Mediator.

1.2 Adding new services to the ecosystem

The codebase of the Audio Commons Mediator' provides a Python package names acservice? which
needs to be used to implement the service plugin (a Python class) which communicates the Audio
Commons Mediator and the third party service. The acservice package defines a base class
BaseACService and a number of mixins ACServiceXXXMixin which represent the different
functionalities that are described in the APl and supported in the ecosystem. For example, one of this
functionalities is “text search”. The Python class representing a service is implemented by combined
inheritance of BaseACService and a number of other mixins. For example, if a service supports text
search and download features, its plugin will consist of a Python class which inherits from
BaseACService, ACServiceTextSearchMixin and ACServiceDownloadMixin and implements a number
of methods as required in each mixin. Each of this mixins are also called components, therefore a
service inside the Audio Commons Mediator is defined as a composition of components. The figure
below illustrates the architecture of service plugins inside the Audio Commons Mediator and how are
these connected to other parts of the ecosystem.

Application
http
Audio Commons API
Audio Commons Mediator
BaseACService
Service plugin
with
components
ACServdoaiumMxin ACService TextSearchMixin ACDownlcadMixn
http
Third party service API

1 https://github.com/AudioCommons/ac-mediator
2 https://github.com/AudioCommons/ac-mediator/tree/master/services/acservice

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 50f 18

https://github.com/AudioCommons/ac-mediator/tree/master/services/acservice
https://github.com/AudioCommons/ac-mediator

AudioCommons
D2.6 Service Integration Draft Guidelines

Currently, the acservice package defines the following available components/functionalities:

Base (BaseACService) Needed for all services provides basic elements and
features (such as storing service name and id)
which are common and used by other components.

Authentication (ACServiceAuthMixin) Adds support for authenticating requests with the
third party service. Some service must implement

the option of authenticating end users if an Audio

Commons user account is linked with a third party
service user account.

Text search (ACServiceTextSearchMixin) Adds support for searching audio content based on
an input textual query. The text search component
includes also support for sorting results and
deciding which metadata fields should be included
in the search results response.

Download (ACDownloadMixin) Adds support for downloading audio resources
directly from the third party content provider. This
component provides a way in which an application
directly connects with a third party service to
download an audio file.

Licensing (ACLicensingMixin) Adds support for licensing audio resources from
one or more content providers.

These components have an equivalent with the currently available APl endpoints defined in the Audio
Commons API specification (see Deliverable D2.4).

In the following subsections we describe the requirements for implementing each of the available
types of components and show example implementations from the service plugins currently
implemented in the Audio Commons Mediator. Details about very specific implementation aspects
are given in the documentation of the acservice package® and as comments in the source code.

1.2.1 Base component

All service plugins must inherit from the base class BaseACService. The BaseACService provides
methods which are common to the service plugins and which are used by the other components (i.e.
mixins) of the plugin. BaseACService is the first class that should be inherited. When inheriting from
BaseACService, and number of object level attributes must be defined which include:

e NAME: name of the service
e URL: web URL of the service (for informative reasons)

e API BASE URL: base URL of the APl exposed by the service

8 https://m.audiocommons.org/docs/acservice.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 6 of 18

https://m.audiocommons.org/docs/acservice.html

AudioCommons
D2.6 Service Integration Draft Guidelines

Besides these properties, there is a class method that can optionally be overridden:

e validate response status code: this method is called after a response is received from
a request to the third party service API. This method is expected to check the status code of
the received response and see if there are any errors. In case of errors, this method should
translate the received error and raise an appropriate Audio Commons Mediator (ACException
or ACAPIException objects®). If no specific ACException or ACAPIException object represents
the received error, then a generic ACException object with a custom message should be
raised.

If validate response status code is not overridden, then a default implementation is
used in which a generic ACException is raised if the status code of a request response is not
equal to 200 (HTTP response code for successful responses).

What follows is an implementation example of the base component for the Freesound service:

class FreesoundService (BaseACService, ...):

NAME = 'Freesound'
URL = 'http://www.freesound.org'
API BASE URL = "https://www.freesound.org/apiv2/"

def validate response status code(self, response):
if self.TEXT SEARCH ENDPOINT URL in response.request.url:
If request was made to search endpoint, translate 404 to 'page
not found exception'
if response.status code == 404:
raise ACAPIPageNotFound
if 'download/link' in response.request.url:
If request was made to download link endpoint, translate 404 to
'resource does not exist'
if response.status code == 404:
raise ACAPIResourceDoesNotExist
if response.status code != 200:
raise ACException (response.json() ['detail'], response.status code)
return response.json ()

1.2.2 Authentication component

The authentication component is mandatory to all service plugins as it specifies how should the
mediator authenticate requests to third party services. The ACServiceAuthMixin package provides
two types of authentication by default which are APIKEY_AUTH_METHOD and
ENDUSER_AUTH_METHOD.

The first method (APIKEY_AUTH_METHOD) consists of the use of an application token which is
added to every request to the third party service to identify the entity who's making the request. The
token that's used is specified as a configuration parameter of the service (see section 1.2.6). The
Audio Commons Mediator always uses the same token when communicates with a specific service.
Developers of applications that connect to the Audio Commons Ecosystem do not need to request

4 Available exceptions can be found in
https://qgithub.com/AudioCommons/ac-mediator/blob/master/ac_mediator/exceptions.py

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 7 of 18

https://github.com/AudioCommons/ac-mediator/blob/master/ac_mediator/exceptions.py

AudioCommons
D2.6 Service Integration Draft Guidelines

API credentials for individual third party services as they are not directly going to communicate with
them.

The second authentication method (ENDUSER_AUTH_METHOD) is used when the third party service
wants to authenticate the end user who is accessing their service through an application that
communicates with the Audio Commons mediator (see figure below).

End __. Audio Commons Service Third party
user Application Mediator components service

http http

Authentication between the application and the mediator is done through OAuth2 (see Deliverable
D2.4), therefore the mediator always knows which end user is making a particular request and
through which application. However, to authenticate an end user with a third party service, the
mediator needs to know to which user account of the third party service a particular Audio Commons
user account corresponds. This is done through linking of Audio Commons user accounts with third
party services’ user accounts (see Deliverable D2.5). When using ENDUSER_AUTH_METHOD, requests
sent to the third party are authenticated with a valid third party service user account. This might be
required in specific situations such as when a sound needs to be uploaded to the service. In this case
it is quite probable that the sound needs to be linked to a specific user account and therefore
ENDUSER_AUTH_METHOD is needed. The service providers can decide, for each supported
component of the ecosystem which authentication method is required. ENDUSER_AUTH_METHOD is
implemented following the OAuth2 specification.

By implementing the authentication component, service plugins tell the mediator how should requests
by authenticated in one of the aforementioned two methods. If a service does not support any of
these two methods, then custom code needs to be provided.

When inheriting from ACServiceAuthMixin, and number of object level attributes must be defined
which include:

e SUPPORTED AUTH METHODS: a list of the supported auth methods

e BASE AUTHORIZE URL: authorize URL for the OAuth2 flow (needed for the Audio Commons
mediator to provide the “link accounts” functionality. This is only needed if
ENDUSER_AUTH_METHOD is supported.

e ACCESS TOKEN URL: URL where to retrieve access tokens as defined in the OAuth2
specification. This is only needed if ENDUSER_AUTH_METHOD is supported.

e REFRESH TOKEN URL: URL where to retrieve refresh tokens as defined in the OAuth2
specification. This is only needed if ENDUSER_AUTH_METHOD is supported.

When inheriting from ACServiceAuthMixin, the following class methods need to be implemented:

e get auth info for request: this method should return instructions about how should
the authentication tokens be included in requests to the third party service API (e.g. in a
header, as a request parameter, etc.). See the acservice documentation for specific details
about how should these instructions be indicated. What follows is an example
implementation of this method as taken from Freesound’s service implementation:

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 8 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

def get auth info for request (self, auth method, account=None):
header content = 'Token {0}'.format (self.get apikey())
if auth method == ENDUSER AUTH METHOD:
header content = 'Bearer {0}'.format (self.get enduser token (account))
return {'headers': {'Authorization': header content}}

® get access token from credentials: when a user links his Audio Commons account
with a third party service account using the link functionality of the mediator, some
credentials are returned and stored as a JSON object in the mediator database. This method
takes as input an object with the stored credentials and returns the access token (which is
part of the credentials). What follows is an example implementation of this method as taken
from Freesound’s service implementation:

def get access token from credentials(self, credentials):
return credentials.credentials['access_token']

e get refresh token from credentials: similar to the previous method, but returning
the refresh token instead (which can be used to renew a old access token).

e check credentials are valid: this method also takes as input some previously stored
credentials and tells the mediator whether this credentials are valid and therefore can be used
(i.e. the access token is not expired yet). What follows is an example implementation of this
method as taken from Freesound’s service implementation:

def check credentials are valid(self, credentials):
date expired = credentials.modified + \
datetime.timedelta (seconds=credentials.credentials['expires_in'])
if timezone.now() > date expired:
raise ACAPIInvalidCredentialsForService

1.2.3 Search component

The search component is the most complex of the components of a service plugin. Search
component must be able to not only translate text search query parameters to the equivalent
parameters in the third party API search endpoint, but it also must be able to interpret the complex
response returned by the third party service. The search component in the acservice package is
designed to provide i) a set of common search functionalities which mainly consist in interpreting and
translating search results received from a service to a format that the mediator understands; and ii) a
set of methods through which queries can be formulated in different ways (i.e. based on text, based
on sound similarity, etc.). In this way, methods for interpreting search responses only need to be
implemented once regardless of the number of methods available for formulating queries. The
current implementation of search component in acservice package only supports text-based search

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 9 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

queries (where the input is some string with query terms), but the current design will allow the easy
addition of other methods for specifying queries in the future.

When inheriting from ACServiceTextSearchMixin, and number of object level attributes must be
defined which include:

e TEXT SEARCH ENDPOINT URL: sets the URL of the third service APl endpoint for search (or
a suitable search endpoint that can take as input a string of query terms).

When inheriting from ACServiceTextSearchMixin, the following methods are expected to be
implemented:

e process g query parameter: this method takes as input a query parameter ‘q’ defined by
the Audio Commons API and converts it into a dictionary of the required request parameters
of third party search APl endpoint. The following code example is taken from the Jamendo
service plugin implementation. In Jamendo API, the query parameter is named ‘search’:

def process g query parameter (self, Qq):
return {'search': g}

e process s query parameter: this method takes as input a query parameter ‘s’ which
indicates the sorting preference for the returned results. The Audio Commons Mediator
defines a number of sorting options?®, and this method translates from the mediator sorting
option to the corresponding third party service sorting option. If there is no equivalent, then a
default value can be set but a warning can be raised. Similarly to the previous method, it
returns a dictionary with the request parameters that will need to be set in the request to the
third party service in order to return sounds with the specified ordering. An example of the
implementation of this method can be seen online at
https://qgithub.com/AudioCommons/ac-mediator/blob/master/services/3rd_party/freesound.
py#L104 (we don't include here to avoid very long sections of code).

ACServiceTextSearchMixin is a Python class which inherits from BaseACServiceSearchMixin,
therefore, when implementing the search components there are also a number of methods from
BaseACServiceSearchMixin that also need to be overridden:

e get results list from response: third party services are expected to return search
results in some structured format that can be converted into a Python dictionary. The current
version of acservice package expects a JSON response from third party services. Given that
JSON response, this method returns all returned results in a single (sorted) list. The example
implementation from the Jamendo service plugin is as follows:

def get results list from response(self, response):
return response|['results']

e get num results from response: similarly to the previous method, given the contents of
a response as a Python dictionary this method extracts the information about the total
number of found results (if present) and returns it.

® process size query parameter: the Audio Commons APl specifies a ‘size’ request
parameter which can be used to decide how many search results per page should be received

5 http://qithub.com/AudioCommons/ac-mediator/blob/master/services/acservice/constants.py#L71

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 10 of 18

https://github.com/AudioCommons/ac-mediator/blob/master/services/3rd_party/freesound.py#L104
https://github.com/AudioCommons/ac-mediator/blob/master/services/acservice/constants.py#L71
https://github.com/AudioCommons/ac-mediator/blob/master/services/3rd_party/freesound.py#L104

AudioCommons
D2.6 Service Integration Draft Guidelines

from third party services. Similarly to the previously described
“process X query parameter” methods, this one returns the necessary query parameters
that must be added to the request to the third party service to obtain a list of results of length
‘size’. The following code shows an example implementation from Freesound:

def process size query parameter(self, size, common search params) :

size = int(size)

if size > 150: # This is Freesound's maximum page size
self.add response warning ("Maximum 'size' is 150")
size = 150

return {'page_size': size}

See how in this example the service plugin checks if size is outside the bounds that are
known for Freesound and adds a warning to the response using the add_response warning
class method. This method is defined in BaseACService class therefore can be used
anywhere in the service plugin. When used, it stores a message which will be delivered to the
original application (i.e. added to the aggregated response, see Deliverable D2.5).

e process page query parameter: similarly to other methods, this one is used to request a
specific page of results to the third party service. Example implementation from Freesound:

def process page query parameter (self, page, common search params) :
return {'page': page}

® add extra search query params: this last method is used to add any other query
parameters that are required by the third party service on its search API endpoint. This only
needs to be implemented if there are any requirements of extra parameters. It should also
return a dictionary with key and value pairs of additional query parameters to be added to the
final request.

Besides all of the above methods, there is one last thing that search component needs to implement
in order to be able to understand the returned search results. As mentioned above, search responses
from third party services are expected to include a list of results (which is accessed by
get results list from response). Each individual result in that list is expected to be a
dictionary with key/value pairs as sound metadata. This is standard way of returning search results in
RESTful APIs, see the following example response from Freesound:

"results": [

{
"id": 320079,
"name": "riesen roboterarm.wav",
"tagS": [

"marker",

"industrial",

"field-recording",

"Servo",

"trade-fair"
]I
"license": "http://creativecommons.org/licenses/by-nc/3.0/",
"username": "system fm"

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 11 of 18

http://creativecommons.org/licenses/by-nc/3.0/

AudioCommons
D2.6 Service Integration Draft Guidelines

"id": 320078,
"name": "gabelstabler.wav",
"tags": [
"marker",
"industrial",
"field-recording",
"trade-fair"
]I
"license": "http://creativecommons.org/licenses/by-nc/3.0/",
"username": "system fm"

Every service will include different information for each result and different services will typically use
different names and have different ways to indicate specific metadata properties. The final version of
the Audio Commons Ontology (not published yet) will include a section about “sound schema”, which
unifies metadata names for sound properties. The search component of a service plugin is in charge
of translating from individual third party metadata “schemas” to the common names and types of
values indicated in the Audio Commons Ontology. In order to do that, a number of methods can be
implemented in the service plugin which take as input the Python dictionary corresponding of an
individual search result coming from the third party service, and returns a specific Audio Commons
compatible metadata field.

There are a number of metadata fields that can be easily translated from the service response to the
Audio Commons compatible format. This can be defined using a method called
direct fields mapping which in essence includes a dictionary of Audio Commons sound
schema field names and their equivalent name in the third party service response. These can be
translated by simply changing the metadata field name. What follows is an example implementation
of this method for the case of Freesound:

def direct fields mapping(self):
return {

FIELD URL: 'url',
FIELD NAME: 'name',
FIELD AUTHOR NAME: 'username',
FIELD TAGS: 'tags',
FIELD DURATION: 'duration',
FIELD FILESIZE: 'filesize',
FIELD CHANNELS: 'channels',
FIELD BITRATE: 'bitrate’,
FIELD BITDEPTH: 'bitdepth',
FIELD SAMPLERATE: 'samplerate',
FIELD FORMAT: 'type',
FIELD COLLECTION URL: 'pack’,
FIELD DESCRIPTION: 'description',
FIELD LICENSE DEED URL: 'license',

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 12 of 18

http://creativecommons.org/licenses/by-nc/3.0/

AudioCommons
D2.6 Service Integration Draft Guidelines

Nevertheless, there are some metadata fields which can not be translated so easily. For each of these
fields, an extra method must be provided with a decorator that tells for which Audio Commons
metadata property it implements translation. The following examples (taken from the Freesound
plugin) exemplify the definition of these functions:

@translates field(FIELD PREVIEW)

def translate field preview(self, result):
The URL of s preview 1is nested in a ‘'previews’ dictionary instead of
at the root of the individual result dictionary
return result|['previews'] ['preview-hg-ogg']

@translates field(FIELD AUTHOR URL)

def translate field author url(self, result):
The URL to the author’s page in the content provider site needs to be
manually constructed as it is not directly returned by Freesound
return self.API BASE URL + 'users/{0}/'.format (result['username'])

This is all that is needed to add search support to a service of the Audio Commons Ecosystem. If
done properly it only requires a few lines of code to integrate basic search functionality for content
providers and make their content accessible in the Audio Commons Ecosystem.

1.2.4 Download component

An essential feature of the Audio Commons Ecosystem is that audio resources published in it should
be available for download regardless of their later usage (as per Creative Commons licenses).
However, when an application needs to download an audio resource it should download it from the
content provider (the third party service) hosting the resource and not via the mediator. Because
applications are always expected to interact with services through the mediator and don’t know how
to directly talk to third party services, the Audio Commons Mediator needs to provide a way through
which applications can download from third party services without really knowing how to interact with
them.

The solution that the Audio Commons Mediator proposes is the implementation of the download
component which service plugins of content providers should include. This download component is
supposed to provide download URLs that applications can use to download a resource from a content
provider without the need of being authenticated or knowing any specifics of its API. The idea is that
the Audio Commons Mediator requests a direct download link for a particular audio resource to a
content provider and then hands the returned download link to the application so that it can download
the content directly from the content provider.

In order to implement the download component, service plugins must inherit from ACDownloadMixin
and define the following property:

e DOWNLOAD ACID DOMAINS: this should be a list of Audio Commons resource identifier
(ACID) domains for which the service provides download links. ACID domains are service
names. Typically a content provider will only provide download links for its content, therefore
DOWNLOAD ACID DOMAINS will typically be a list of one single element which include the
service name as defined in the base component (Section 1.2.1).

This project has received funding from the European Union’s Horizon 2020 P 13 0f 18
research and innovation programme under grant agreement N° 688382 age 0

AudioCommons
D2.6 Service Integration Draft Guidelines

Besides that property, the service plugin must also implement the following method:

e get download url: this method sends a request to the third party service and returns a
direct download URL that can then be handed to an application form downloading a resource
without the need of any authentication. What follows is an example implementation from the
Freesound service plugin:

def get download url(self, context, acid, *args, **kwargs):

Translate ac resource id to Freesound resource 1id
if not acid.startswith(self.id prefix):
raise ACAPIInvalidACID
resource id = acid[len(self.id prefix) :]
try:
int (resource id)
except ValueError:
raise ACAPIInvalidACID

response = self.send request (
self.API BASE URL + 'sounds/{0}/download/link/'.format (resource id),
use authentication method=ENDUSER AUTH METHOD,
account=Account.objects.get (id=context['user_account_id']),

)

return response['download link']

Note that to be able to implement the download component, third party services need to have a way
to generate such direct download links built in their APIs or need to have some download URLs which
serve the content without the need of authentication. If this requirement is not met, then the download
component can not be implemented.

1.2.5 Licensing component

The Audio Commons API specifies that a service that implements licensing functionality should be
able to return a URL that a content user can access to obtain a usage license of a particular Audio
Commons audio resource. Therefore, the Audio Commons Mediator is expected to carry out any
licensing operation besides telling a content user where to go to get a license of a particular Audio
Commons resource.

The licensing component therefore works in a very similar way to the download component in the
sense that it returns a URL given an Audio Commons identifier (ACID). In order to implement the
licensing component, service plugins must inherit from ACLicensingMixin and define the following
property:

e LICENSING ACID DOMAINS: this should be a list of Audio Commons resource identifier
(ACID) domains for which the service provides licensing URLs. ACID domains are service
names. Typically a content provider will only provide licensing for its content, therefore
LICENSING ACID DOMAINS will typically be a list of one single element which include the
service name as defined in the base component (Section 1.2.1).

Besides that property, the service plugin must also implement the following method:

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 14 of 18

AudioCommons
D2.6 Service Integration Draft Guidelines

e get licensing url: this method sends a request to the third party service and returns a
licensing URL that can then be handed to an application and shown to the content user. What
follows is an example implementation from the Jamendo service plugin:

def get licensing url(self, context, acid, *args, **kwargs):
if not acid.startswith(self.id prefix):
raise ACAPIInvalidACID
resource id = acid[len(self.id prefix) :]
response = self.send request (
self.TEXT SEARCH ENDPOINT URL,
params={'id': resource id, 'include': 'licenses'},
)
if response['headers']['results _count'] == 0:
raise ACAPIResourceDoesNotExist
return response['results'][0].get ('prourl', None)

1.2.6 Configuring a service

In the sections above we have explained how to implement different components into a service
plugin. However, service plugins need to be configured with some configuration parameters such as
API credentials. These configuration parameters need to be defined in a configuration file and are
automatically loaded by the service manager of the Audio Commons Mediator and made available to
the service plugins.

Different third party services might require different configuration parameters. The different
components of service plugins can implement a conf xxX method which is given the configuration
parameters from the configuration file and can store them as required. The typical use case is the
loading of third party services’ APl credentials. These credentials (typically CLIENT ID and
CLIENT SECRET), are stored in the configuration file, loaded by the mediator and passed to the
authentication component by calling the conf auth method with the configuration as parameter.
The default implementation of the authentication component expects client ids and secrets to be in
the configuration parameters, its conf_auth method is implemented as:

def conf auth(self, config):
if 'client_id' not in config:
raise ImproperlyConfiguredACService ('Missing item \'client_id\'')
if 'client secret' not in config:
raise ImproperlyConfiguredACService ('Missing item \'client secret\'')
self.set credentials(config['client id'], config['client secret'])

The other typical use case is the loading of service IDs provided by Audio Commons. Each service is
provided a unique ID which is loaded in the service plugin base component. In this file:
https://github.com/AudioCommons/ac-mediator/blob/master/services/services_conf.example.cfqg
you can see an example configuration file which stores all configuration parameters from third party
services.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 15 of 18

https://github.com/AudioCommons/ac-mediator/blob/master/services/services_conf.example.cfg

AudioCommons
D2.6 Service Integration Draft Guidelines

1.2.7 Service description

In order to carry out service orchestration, the Audio Commons Mediator needs to know the
functionalities supported by each service and therefore decide how to forward requests based on that
(see Deliverable D2.5). Also, the Audio Commons API defines an endpoint which applications can
access to see which services are connected to the Audio Commons Ecosystem and what they
provide.

The BaseACService class implements a method called get service description which inspects
every individual component implemented in the service plugin and automatically returns a description
of its capabilities. By implementing the components as described in the sections above, the service
description can be done automatically without the need of any extra method to be implemented by
developers. However, in future iterations of the mediator (see next section) we expect to use a
declarative service description approach which can be interpreted both by the mediator and by third
party applications and which use standardised service description frameworks like WSDL and OWL-S°
. What follows is an example service description for the current implementation of the Freesound
service plugin.

'Freesound': {
'id': 'aaa099c0',
'url': 'http://www.freesound.org',
'components': ['download', 'text search'],
'description': {
'download': {
'acid domains': ['Freesound']

b

'text search': {

'supported fields': ['ac:duration', 'ac:bitdepth', 'ac:samplerate',
'ac:channels', 'ac:license deed url',
'ac:description', 'ac:format', 'ac:author',
'ac:bitrate', 'ac:collection url', 'ac:url',
'ac:filesize', 'ac:tags', 'ac:name',
'ac:timestamp', 'ac:license', 'ac:author url',
'ac:id', 'ac:preview url'],

'supported sort options': ['-relevance', '-popularity', 'popularity',
'-duration', 'duration', '-downloads',
'downloads', '-created', 'created']

® https://www.w3.org/Submission/OWL-S/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 16 of 18

https://www.w3.org/Submission/OWL-S/

AudioCommons
D2.6 Service Integration Draft Guidelines

2 Conclusions and future directions

In this deliverable we have provided draft guidelines about how to integrate new services to the Audio
Commons Ecosystem. Integrating a new service is achieved by implementing a service plugin using
the Python programming language and a Python package called acservice and included in the Audio
Commons Mediator codebase.

We have seen that a service plugin is defined by the implementation of a number of components
which add support for specific functionalities like ‘text search’ or ‘download’. Service plugins need to
inherit from specific class mixins and overwrite a number of methods and class properties to enable
support for each component.

Examples of already implemented service plugins of the prototype version of the Audio Commons
Ecosystem can be found in the Audio Commons Mediator source code repository:
https://qgithub.com/AudioCommons/ac-mediator/tree/master/services/3rd_party.

The current version of acservice package is functional and allows to easily add new services to the
ecosystem. However, as the AudioCommons project advances we will improve the package and add
new functionalities. In future updates we expect the following changes:

e Add new components and modify existing as required by updates in the Audio Commons API
specification.

e Allow the service plugin to limit access quota (implement throttling) to specific API
endpoints. Depending on how this functionality is designed, it could either be implemented in
the Audio Commons Mediator itself or strictly as part of the acservice package.

e Provide integrated plugin testing in acservice package or as an external program. We will
provide a tool that developers can use to test if their implementation of the service plugin is
compatible with the Audio Commons Mediator and to diagnose potential problems or
incompatibilities. For example, such a tool could test a search component and raise warnings
if some query parameters or metadata fields are not supported by the component
implementation. Such ideas have already been explored in the Audio Commons Mediator
codebase’ and deployed in the mediator, but have not been incorporated as part of the
acservice package.

e The acservice is expected to be more integrated with the Audio Commons Ontology and take
advantage of semantic-web technologies to refactor some of its current functionalities. This
also applies to expected developments of the Audio Commons Mediator in general (see
Deliverable D2.5). In particular we plan to explore a way to provide a single declarative service
description which can be read and interpreted by the acservice package and which provides
all needed information to incorporate a service into the ecosystem. In such case, to add a
new service to the ecosystem developers should simply provide that service description file
instead of implementing a Python class. To provide this service description we plan to take
advantage of existing semantic web service description protocols such as WSDL® or OWL-S°

e Finally, we aim to make the AC API fully Linked Data compatible by tightly integrating the AC
API responses with the the AC Ontology. This will be achieved using a semantic web and
linked data compatible extension of the popular JSON messaging protocol currently used by
the majority of Web APIs. This extension called JSON-LD is fully compatible with, and may be

7 https://github.com/AudioCommons/ac-mediator/blob/master/services/views.py
8 https://www.w3.org/TR/wsd|20/
° https://www.w3.org/Submission/OWL-S/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 17 of 18

https://github.com/AudioCommons/ac-mediator/blob/master/services/views.py
https://github.com/AudioCommons/ac-mediator/tree/master/services/3rd_party
https://www.w3.org/TR/wsdl20/
https://www.w3.org/Submission/OWL-S/

AudioCommons
D2.6 Service Integration Draft Guidelines

interpreted as conventional JSON data, however, it provides the additional benefit of
consuming the API response as a Linked Data graph. This facilitates the inclusion of unique
identifiers in all messages that expand into URIs providing globally unique names for
metadata fields as well as audio items and other resources referred to in the messages. This
provides the mechanism for tying responses directly to ontology-based schemata (effectively
providing formal schema for otherwise ad-hoc JSON data) and allows for the interpretation of
responses as semantic graphs which can be processed more effectively using graph search
or transformation algorithms. This facilitates declarative interpretation and alleviates the
need for hard-coding implementations against human readable APl documentations that are
amenable to constant change and evolution.

This project has received funding from the European Union’s Horizon 2020 P 18 of 18
research and innovation programme under grant agreement N° 688382 age 0

