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Executive Summary 
This deliverable provides an overview of existing state-of-the-art algorithms/descriptors for the           
automatic annotation of music samples and music pieces. The algorithms and music topics compiled in               
this deliverable have been chosen after examination of the output of the user survey included in                
deliverable D2.1 and with the aim of providing a general overview of common Music Information               
Retrieval (MIR) topics.  

In this document we divide existing algorithms and descriptors in low-level and high-level categories. On               
the one hand, low-level descriptors include relatively simple representations of audio content (such as              
spectral representations) plus more complex musical representations such as those bearing information            
about tonality and rhythm. On the other hand, high-level (or semantic) features include musical concepts               
of a higher level of abstraction such as music genre or mood and which are typically computed using                  
classifier models trained on annotated datasets or other machine learning techniques. 

In this document, the emphasis is put on listing existing descriptors and relating them to available                
implementations rather than focusing on providing in depth algorithm descriptions and evaluations of             
their accuracy. For this reason, we include tables summarising existing algorithms and containing             
pointers to reference implementations as well as tables summarising datasets used for training and              
evaluation of particular tasks. 

This document should be useful as a reference starting point for further research on feature extraction                
and high-level classification to be carried out in WP4 and, potentially, WP5.  
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Background 
This deliverable belongs to the “Compilation of state-of-the-art methods for the automatic annotation of              
musical content” task (T4.1) of the “Semantic annotation of musical sound properties” work package              
(WP4). This document is partially based on the output of the deliverable “Requirements Report and Use                
Cases” (D2.1), in which a survey was carried out to learn what users expect of systems developed within                  
AudioCommons. This document should serve as the basis for further research on automatic music              
annotation and for the final definition of the descriptors to be included in the music annotation tools that                  
will be released within the AudioCommons project (deliverables D4.2, 4.3, 4.7, 4.8, D4.12 and D4.13). 
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1 Introduction 
 

1.1 Main objectives and goals 
The goal of this deliverable is to provide an overview of existing state-of-the-art algorithms/descriptors              
for the automatic annotation of music samples and music pieces. The algorithms and music topics               
compiled in this deliverable have been chosen after examination of the output of the user survey                
included in deliverable Requirements Report and Use Cases (D2.1) and to provide a general overview of                
common Music Information Retrieval (MIR) topics.  

 

1.2 Methodology 
It is common practice in the MIR research field to make a distinction between low-level, mid-level and                 
high-level audio features (or descriptors). In the “Roadmap for Music Information Research” published             
as a result of the MIReS EU project (FP7, ICT-2011.1.5 Networked Media and Search Systems, grant                1

agreement No 287711), the following definitions are proposed [Mires13]:  

● Low-level features relate directly to signal properties and are computed according to simple             
formulae. Examples are the zero-crossing rate, spectral centroid and global energy of the signal.              
Time-domain features such as the amplitude envelope and attack time are computed without any              
frequency transform being applied to the signal, whereas spectral features such as centroid,             
spread, flatness, skewness, kurtosis and slope require a time-frequency representation [...]. 

● Mid-level features (e.g. pitches and onset times of notes) are characterised by more complex              
computations, where the algorithms employed are not always successful at producing the            
intended results. Typically a modelling step will be performed (e.g. sinusoidal modelling), and the              
choice of parameters for the model will influence results. For example, in Spectral Modelling              
Synthesis, the signal is explained in terms of sinusoidal partial tracks created by tracking spectral               
peaks across analysis frames, plus a residual signal which contains the non- sinusoidal content              
[...]. 

● High-level features (e.g. genre, tonality, rhythm, harmony and mood) correspond to the terms and              
concepts used by musicians or listeners to describe aspects of music. To generate such features,               
the models employed tend to be more complex, and might include a classifier trained on a                
relevant data set, or a probabilistic model such as a hidden Markov model (HMM) or dynamic                
Bayesian network (DBN) [...]. 

However, this distinction is not always clear as sometimes there are algorithms or music properties               
whose level of abstractness is ambiguous. For the sake of simplification, in this document we will only                 
make a distinction between low-level and high-level features. On the one hand, low-level features              
include relatively simple representations of audio content (such as those included in the low-level and               
mid-level categories of the MIReS roadmap) plus more complex musical representations such as             
tonality and rhythm. On the other hand high-level (or semantic) features include musical concepts of a                
higher level of abstraction such music genre or mood and which are typically computed using classifier                
models trained on annotated datasets or other machine learning techniques. 

This document is divided in two main sections which give an overview of the state-of-the-art of low-level                 
and high-level features (sections 2 and 3 respectively). The emphasis is put on listing existing               

1 http://www.mires.cc 
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algorithms and relating them to available implementations rather than focusing on providing in depth              
algorithm descriptions and evaluations of their effectivity. For this reason sections 2 and 3 include               
tables summarising existing algorithms and containing pointers to reference implementations as well as             
tables summarising datasets used for training and evaluation of particular tasks. 

 

1.3 Terminology 
AudioCommons: reference to the EC H2020 funded project AudioCommons, with grant agreement nr             
688382. 

Audio Commons Initiative: reference to the AudioCommons project core ideas beyond the lifetime and              
specific scope of the funded project. The term “Audio Commons Initiative” is used to imply i) our will to                   
continue supporting the Audio Commons Ecosystem and its ideas after the lifetime of the funded               
project, and ii) our will to engage new stakeholders which are not officially part of the project                 
consortium. 

Audio Commons: generic reference to the Audio Commons core ideas, without distinguishing between             
the concept of the initiative and the actual funded project. 

Audio Commons Ecosystem (ACE): set of interconnected tools, technologies, content, users and other             
actors involved in publishing and consuming Audio Commons content. 

Audio Commons content (ACC): audio content released under Creative Commons licenses and            
enhanced with meaningful contextual information (e.g., annotations, license information) that enables           
its publication in the ACE. 

Content creator: individual users, industries or other actors that create audio content and publish in the                
ACE through content providers. 

Content provider: services that expose content created by content creators to the ACE. 

Content user: individual users, industries or other actors that use the content exposed by content               
providers and created by content creators in their creative workflows. 

Tool developer: individual users, industries or other actors that develop tools for consuming (and also               
potentially publishing) Audio Commons content. 

Embeddable tools: tools for consuming Audio Commons content that can be embedded in existing              
production workflows of creative industries. 

Music samples: audio signals representing simple music events such as single notes, instrument hits,              
melodies and loops. Music samples can be used in music production contexts to, for example, build a                 
sampler application using recordings of isolated instrument notes, or to create a music composition by               
overlaying different loops.  

Music pieces: audio signals representing full compositions in the traditional sense of “songs”. Music              
pieces can be used in a creative context as, for example, the soundtrack of a video or as remixable                   
material for a music producer.  

  

 

 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N° 688382 Page 7 of 51

 



 
 
AudioCommons 
D4.1 [...] automatic annotation of music pieces and music samples 

2 Low-level descriptors 
In this section we give an overview of existing low-level descriptors that can be automatically extracted                
from audio to annotate music pieces and music samples. The section is separated in a number of                 
subsections that roughly relate to different music properties that can be annotated. Each subsection              
includes tables with links to existing implementations of some of the corresponding algorithms. 

 

2.1 Dynamics 

2.1.1 Loudness 
According to Wikipedia, Loudness is the characteristic of a sound that is primarily a psychological               
correlate of physical strength (amplitude). More formally, it is defined as "that attribute of auditory               
sensation in terms of which sounds can be ordered on a scale extending from quiet to loud" . In this                   2

document we consider loudness as a global single descriptor that would allow to order audio signals                
from quiet to loud. Different ways have been proposed for computing the loudness of an audio signal.                 
Most basic ones are based on simple calculations over signals’ energy (like using Steven’s power law to                 
measure the perceived intensity of a stimulus ). More complex ones take into consideration             3

psychoacoustics and different time scales such as the recent EBU R128 recommendation for loudness              
measurement [EBU16]. A number of implementations of loudness algorithms can be found in the table               
below. 

 

Table 2.1: Implementations of Loudness descriptors 

Name/paper Implementation Link to code/repository 

Loudness Essentia (Loudness 
algorithm) 

https://github.com/MTG/essentia/blob/master/sr
c/algorithms/temporal/loudness.cpp 

Vickers Loudness 
[Vickers01] 

Essentia 
(LoudnessVickers 
algorithm) 

https://github.com/MTG/essentia/blob/master/sr
c/algorithms/temporal/loudnessvickers.cpp 

EBU R128 [EBU16] Essentia 
(LoudnessEBUR128 
algorithm) 

https://github.com/MTG/essentia/blob/master/sr
c/algorithms/temporal/loudnessebur128.cpp 

RMS (energy) Essentia (RMS algorithm) https://github.com/MTG/essentia/blob/master/sr
c/algorithms/stats/rms.cpp  

ReplayGain  Essentia (ReplayGain 
algorithm) 

https://github.com/MTG/essentia/blob/master/sr
c/algorithms/standard/replaygain.cpp  
https://en.wikipedia.org/wiki/ReplayGain  

Loudness LibXtract, also ported to a 
Vamp plugin 

LibXtract: 
https://github.com/jamiebullock/LibXtract 

2 https://en.wikipedia.org/wiki/Loudness 
3 https://en.wikipedia.org/wiki/Stevens%27_power_law 
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Vamp plugin: 
https://code.soundsoftware.ac.uk/projects/vamp-l
ibxtract-plugins 

 

2.1.2 Envelope 
By “envelope” we refer to the energy envelope of the signal, which approximates the temporal evolution                
of the loudness of an audio signal. As proposed in [Peeters04], the envelope of an audio signal can be                   
characterised with the following descriptors: 

● Attack/decay/sustain/release (ADSR) related descriptors: this is the way in which most           
synthesizers characterise the temporal envelope of generated sounds, dividing it in an attack,             
decay, sustain and release parts. The figure below (taken from [Peeters04]) shows a graphical              
representation of these parameters related to the different parts of the envelope (left). However,              
the ADSR model is typically simplified to an Attack/Rest (AR) model in which the attack is                
maintained as in the ADSR model but the ‘rest’ part can represent either a release for                
non-sustained sounds or a sustain for sustained sounds (see figure below, right). Note that,              
ADSR or AR are in fact only useful to approximate the envelope of relatively simple audio                
events like single hits, instrument notes or simple fx’s, but are not very informative for music                
pieces, soundscapes or other complex audio signals. 
 

 
 
To compute AR of an audio signal a thresholding approach can be used to estimate the start                 
and end of the attack phase (i.e., points in time where energy goes above a minimum and                 
maximum percentage of the maximum amplitude of the sound). Then, [Peeters04] propose            
Temporal increase and Temporal decrease descriptors as linear approximations of attack and            
rest parts of the envelope (i.e., before and after the end of the attack). Log-Attack time is                 
another common descriptor that characterises the attack part and has been proven to be              
perceptually relevant. It is computed as the logarithm of the time elapsed between the start and                
the end of the attack [Peeters04]. For sustained sounds, the rest part can also be characterised                
by estimating its Energy modulation (tremolo). 

● Temporal centroid: the temporal centroid is the time averaged over the energy envelope, and it               
allows distinguishing percussive from sustained sounds by approximating the point in time            
where energy is most concentrated [Peeters04]. Similarly to ADSR related descriptors, temporal            
centroid is not that meaningful to characterise sounds which very complex envelopes            
containing several events separated by silence parts. 
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● Effective duration: the effective duration measures the time where an audio signal’s energy is              
above a certain threshold [Peeters04]. This is the time where the signal is perceptually relevant.               
Similarly to previous descriptors, effective duration is only meaningful for characterising the            
envelope of  single sound events. 

The following table contains links to implementations of the algorithms above: 

 

Table 2.2: Implementations of Envelope descriptors 

Name/paper Implementation Link to code/docs 

Energy envelope,  
Temporal increase,  
Temporal decrease, 
Log-attack time,  
Energy modulation,  
Temporal centroid,  
Effective duration  

Timbre toolbox (@cSound 
class) 

http://www.cirmmt.org/research/tools 
 

Energy envelope,  
Log-attack time,  
Effective duration 

Essentia (Envelope, 
LogAttackTime and 
EffectiveDuration 
algorithms) 

https://github.com/MTG/essentia/blob/mast
er/src/algorithms/standard/envelope.cpp 
 
http://github.com/MTG/essentia/blob/maste
r/src/algorithms/sfx/logattacktime.cpp 
 
http://github.com/MTG/essentia/blob/maste
r/src/algorithms/temporal/effectiveduration.
cpp 

Attack start time, 
Attack end time, 
Log-attack time 

MIR.EDU, also ported to a 
Vamp plugin 

https://github.com/MTG/miredu/blob/master
/src/AttackStartEndTimes.cpp 
 
https://github.com/MTG/miredu/blob/master
/src/LogAttackTime.cpp 

 

2.2 Pitch and Melody 
Several algorithms in audio and music signal processing exist related to the estimation and              
characterization of a signal’s tonal and melodic behaviour. Traditionally, an estimate of the pitch of a                
monophonic music signal has been a very demanded feature. Also, the extraction of pitches of the                4

multiple sources simultaneously present in polyphonic recordings has been a relevant topic. More             
recently, algorithms tailored to the extraction of the predominant source’s pitch or melody in a mixture of                 
other sources have been object of research. 

Although these tasks are strongly linked, they present a different problem formulation and hence they               
can be treated separately. As will be explained later, melody extraction differs from monophonic and               

4 Monophonic signals can be defined as those when at most one note is sounding at a time. On the                    
contrary, complex music signals where several sounds are played simultaneously are denoted as             
polyphonic signals [Klapuri06a]. 
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polyphonic pitch estimation in two aspects [Salamon14]. On the one hand, the signal under              
consideration is polyphonic unlike in the monophonic pitch estimation problem. On the other hand,              
melody extraction entails the identification of a single source carrying the melody, whereas in the               
polyphonic pitch estimation task, multiple pitch values for several sources are outputted. We start by               
giving an overview of pitch estimation techniques for monophonic signals, continue with multiple pitch              
estimation in polyphonic music signals, and finish outlining melody extraction techniques for polyphonic             
music signals. 

2.2.1 Pitch Estimation 
Pitch may be defined as “that attribute of auditory sensation in terms of which sounds may be ordered                  
on a musical scale” [ANSI60]. Depending on the literature, the terms fundamental frequency, i.e., F0, and                
pitch are often interchanged. In most cases these two attributes coincide as pointed out by               
[Camacho08], although this statement does not always hold and counter examples can also be found               
[Patel01]. To be precise, the term fundamental frequency should be used to designate the physical               
property closely related to the subjective or perceptual attribute of pitch [Moore03]. Nonetheless, for the               
sake of simplicity and readability, we will use them indistinctly throughout this document.  

Pitch estimation is a topic with long research tradition. A huge variety of algorithms have been proposed                 
in the last few decades. For this document we have focused on approaches proposed mainly within the                 
last decade and some other older methods that are relevant. Extensive research has been carried out in                 
pitch estimation specifically for speech signals. In fact, some of the music oriented monophonic pitch               
estimators were adapted from preceding speech related algorithms. In this document, the object of              
study is pitch estimation methods that are somehow related to music content, either designed              
specifically for musical signals or at least evaluated with music data. 

Monophonic pitch estimation techniques analyze the audio signal and attempt to detect the pitch from               
it. This techniques can be broadly categorized as follows [Gerhard03, Hajimolahoseini15]: 

● Time domain techniques: methods that make use of the time-domain characteristics of the             
signal, e.g., autocorrelation function 

● Frequency domain techniques: methods that rely on frequency-domain representations of the           
signal, e.g., spectrum or cepstrum, and 

● Parametric methods, which use a signal model with parameters for frequency estimation. 

Time-domain techniques estimate the fundamental frequency by analysing the signal waveform directly.            
Perhaps the most popular algorithm within this family is the YIN algorithm [DeCheveigne02]. This well               
known algorithm is based on the autocorrelation function with a series of improvements to reduce error                
rates. Recently, a modification of YIN (pYIN) has been proposed [Mauch14], following a probabilistic              
approach that enables to output multiple pitch candidates with associated probabilities for an improved              
pitch track. PRAAT algorithm, widely used for speech and phonetic analysis, is sometimes used as               
benchmark. PRAAT’s default approach is based on an accurate autocorrelation function [Boersma93]. 

Among the frequency domain based algorithms is the YINFFT [Brossier07], an optimized version of YIN               
algorithm for computation in the frequency domain. Also, the SWIPE algorithm [Camacho08] estimates             
the pitch as the fundamental frequency of the sawtooth waveform whose spectrum best matches the               
spectrum of the input signal. One approach that can be conceptually regarded as a combination of the                 
two approaches mentioned so far is the HPM algorithm [Luo14]. This method relies on autocorrelation               
both in the time domain and in the frequency domain. 

Within the parametric family, a very recent work [Nielsen16] presents a maximum likelihood (ML) based               
estimator. The proposed method significantly reduces the computational cost of standard ML            
algorithms, while reporting higher accuracy than some autocorrelation based methods. Also, in            
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[Hajimolahoseini15] a so-called time-domain state-space model for the input signal is derived and             
supplied to several type of filters. 

Other recent pitch estimation methods worth mentioning are briefly described next. In [Yang14], the              
proposed BaNa algorithm is claimed to provide high robustness on pitch detection performance with              
focus on speech and music in noisy environments. Despite the algorithm’s public availability, the used               
analysis dataset is somewhat limited and more extensive tests would be desired to test its validity. An                 
auditory inspired pitch extraction method is proposed in [Kumaresan14], emulating the different            
processing mechanisms of the auditory system involved in the perception of pitch. In [Babacan13], the               
adaptation of state-of-the-art speech oriented pitch extraction algorithms for the analysis of singing             
voice is discussed and a comparative evaluation of the most representative techniques is provided              
(PRAAT and YIN among others). Finally, a method to improve the accuracy of previously applied F0                
estimators is proposed in [Stoter15]. It uses time warping iteratively based on an initial F0 estimate. The                 
refinement can be applied to any F0 estimator and is not limited to specific input signal. 

A list of publicly available implementations of algorithms for pitch estimation in monophonic music              5

signals is included in Table 2.3: 

Table 2.3: Implementations of Pitch Detection algorithms 

Name/paper Implementation Link to code/repository 

YIN/ 
[DeCheveigne02] 

Aubio (also as VAMP plugin)     
/Essentia 

Aubio: 
http://aubio.org/manpages/latest/aubiopitc
h.1.html 
 
Aubio (vamp plugin): 
http://aubio.org/vamp-aubio-plugins/  
 
Essentia: 
https://github.com/MTG/essentia/blob/mas
ter/src/algorithms/tonal/pitchyin.cpp 

YINFFT/ 
[Brossier07] 

Aubio/Essentia Aubio: 
http://aubio.org/manpages/latest/aubiopitc
h.1.html 
 
Essentia: 
https://github.com/MTG/essentia/blob/mas
ter/src/algorithms/tonal/pitchyinfft.cpp 

PYIN/ [Mauch14] Vamp plugin http://code.soundsoftware.ac.uk/projects/p
yin 

[Nielsen16] MATLAB code http://kom.aau.dk/~jkn/publications/publica
tions.php 
 

SWIPE/ 
[Camacho08] 

MATLAB code http://www.cise.ufl.edu/~acamacho/publica
tions/swipep.m 

5some algorithms are claimed to yield a high performance but have no implementations available. This               
is the case for the HPM algorithm [Luo14], reported to attain higher accuracy than SWIPE, YIN and AC-P                  
algorithms for certain performance measures. 
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BaNa/ [Yang14] MATLAB code http://www.ece.rochester.edu/projects/wcn
g/code.html 

AC-P/ 
[Boersma93] 

PRAAT http://www.fon.hum.uva.nl/praat/ 
 

 

With respect to the music data used to evaluate the aforementioned pitch estimation algorithms, most               
works utilize a few instrument samples or synthetic signals used within the scope of the publication.                
However, some articles rely on part of the content of more extensive crafted databases. Table 2.4 lists                 
datasets available to researchers that have been partly used for the evaluation of pitch estimation               
algorithms. 
 

Table 2.4: Datasets for evaluation of monophonic pitch estimation systems 

Dataset Comments Link to data 

Musical 
Instrument 
Samples 
Database, 
University of 
Iowa Electronic 
Music Studios 

Recordings of strings, woodwinds, brass, 
percussion and a Steinway piano, mostly 
carried out in anechoic chamber 

http://theremin.music.uiowa.edu/MIS.
html#  

RWC Musical 
Instrument 
Sound Database 
[Goto03] 

Isolated notes found among 150 
instrument performances (3 variations 
each for 50 types of musical 
instruments) 

https://staff.aist.go.jp/m.goto/RWC-M
DB 

MIREX  2004 6 20 monophonic sound files from the 
MIREX 2004 melody extraction contest 

http://ismir2004.ismir.net/melody_co
ntest/results.html  

MIDI Aligned 
Piano Sounds 
(MAPS) 
[Emiya10] 

Among other types of content (chords 
and pieces), it contains isolated notes 
and monophonic sounds from a Yamaha 
Disklavier piano 

http://www.tsi.telecom-paristech.fr/a
ao/en/2010/07/08/  

 

2.2.2 Multi-Pitch Estimation 

Multiple pitch estimation (MPE) consists of estimating the fundamental frequencies present in            
polyphonic sounds, typically over short time frames of an audio signal. In particular, in the Music                
Information Retrieval Evaluation eXchange (MIREX), the task related to Multiple Fundamental Frequency            
Estimation & Tracking is aimed at identifying “the active F0s in each time frame and to track notes and                   
timbres continuously in a complex music signal”. MPE is a challenging topic in polyphonic music               
transcription since it involves dealing with diverse spectral patterns in a wide frequency range that may                

6 Music Information Retrieval Evaluation eXchange (MIREX), 
http://www.music-ir.org/mirex/wiki/MIREX_HOME  
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include overlapping tones from multiple sources (harmonic or non-harmonic) and which quantity may be              
unknown. 

According to [Benetos13a], MPE systems can be classified into three groups based on the core               
techniques employed: 

● feature-based approaches use methods derived from signal processing where a specific model            
is not employed. Instead, the idea is to use measures of pitch salience from the input                
time-frequency representation and criteria for selecting pitch candidates. 

● statistical model-based approaches formulate the multi-pitch estimation problem within a          
statistical framework, viewing it as as a maximum a posteriori (MAP) or as a maximum               
likelihood (ML) estimation problem. 

● spectrogram factorization-based approaches utilize templates of spectral patterns of different          
pitch combinations and/or instruments, followed by input spectrogram decomposition based on           
template activation. This approach is followed by most recent works. 

Within the first category, in [Klapuri06b] a set of possible fundamental frequency candidates is extracted               
from the spectrum based on the principle of harmonic summation. This is done iteratively, removing               
their harmonics from the mixture spectrum every time. Then, the number of harmonic sources is               
estimated and the final set of fundamental frequencies is determined in an optimization stage. In recent                
work [Su15a], a feature-based approach that leverages both frequency and periodicity aspects of music              
signals is proposed, referred to as combined frequency and periodicity (CFP). The idea is to exploit the                 
fact that a pitch forms a harmonic series in the frequency domain and a subharmonic series in the lag                   
(quefrency) domain. Pitches are detected according to the agreement between the two representations,             
thus aggregating the complementary advantages of the two domains. 

An example of the second category is [Duan10], where multiple pitches are estimated with a               
maximum-likelihood approach that models both spectral peaks and non-peak regions of the power             
spectrum. It assumes spectral peaks at harmonic positions and lower energy elsewhere and proposes              
an iterative search strategy to estimate F0s one by one. A neighbourhood refinement method is used to                 
eliminate inconsistent estimations and to refine the polyphony estimation. 

Finally, some works that fall under the third category are described next. In [Vincent10], adaptive spectral                
decomposition is proposed using Non-negative Matrix Factorization (NMF) constrained by considering           
harmonicity and spectral smoothness. More specifically, basis spectra are modeled as weighted sum of              
narrowband spectra representing a few adjacent harmonic partials, adapting spectral envelopes to            
different instruments. 

In [Benetos11], the Shift-Invariant Probabilistic Latent Component Analysis (SIPLCA) method is used,            
allowing for the detection of notes presenting non ideal tunings and frequency modulation patterns, and               
supporting multiple instrument models and pitch templates. Then, Hidden Markov Models (HMMs) are             
used in the post processing step to favour temporal continuity for note tracking. An improved version is                 
presented in [Benetos13b], sharing the same time-frequency representation and note tracking steps, but             
additionally using spectral templates that correspond to sound states of the produced notes. This              
information is incorporated into the model by controlling the states’ order through hidden Markov              
model-based temporal constraints. 

Regardless the mentioned categories, in [Duan14] a method is proposed for the task of multi-pitch               
streaming, i.e., stream pitch estimates into trajectories over entire music performances for each of the               
concurrent sources. The proposed method takes the audio signal together with frame-level pitch             
estimates from any MPE algorithm as inputs. The output is a pitch trajectory for each source. The                 
method follows a constrained clustering approach, aimed at minimizing timbre inconsistencies within            
every cluster, where each cluster corresponds to a source. 
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Table 2.5 lists some of the available open-source algorithms for MPE. 

Table 2.5: Implementations of Multi-Pitch Estimation algorithms 

Name/paper Implementation Link to code/repository 

[Klapuri06b] Essentia https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/tonal/multipitchklapuri
.cpp  

[Benetos13b] Vamp plugin https://code.soundsoftware.ac.uk/projects
/silvet  

[Benetos13c] MATLAB code https://code.soundsoftware.ac.uk/projects
/amt_mssiplca_fast  

[Vincent10] MATLAB code http://www.irisa.fr/metiss/members/evinc
ent/multipitch_estimation.m  

 

[Duan10] MATLAB code http://www.ece.rochester.edu/~zduan/res
ource/Publications.html  

[Duan14] MATLAB code http://www.ece.rochester.edu/~zduan/res
ource/Publications.html  

 

Table 2.6 summarizes a number of datasets available to researchers for evaluating MPE systems. In               
certain works, only some excerpts from a dataset are used for evaluation, rather than the complete                
corpus. 
 

Table 2.6: Datasets for evaluation of MPE systems 

Dataset Comments Link to data 

MIREX 2007 
MultiF0 
Estimation 
Tracking Task 

Development dataset used for the MultiF0 
Estimation Tracking Task, including a 
woodwind quintet recording 

http://www.music-ir.org/mirex/
wiki/2014:Multiple_Fundamenta
l_Frequency_Estimation_%26_Tr
acking  

RWC Classical 
Music Database & 
Jazz Music 
Database 
[Goto02] 

50 pieces for each database, of varied nature https://staff.aist.go.jp/m.goto/
RWC-MDB 
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Disklavier piano 
dataset 
[Poliner07a] 

Includes 10 one-minute classical recordings 
from a Yamaha Disklavier grand piano 

https://acousticbrainz.org/data
sets/accuracy#genre_rosameri
ca 

MIDI Aligned 
Piano Sounds 
(MAPS) [Emiya10] 

Among other types of content (monophonic 
sounds and chords), it contains 30 music 
pieces played on Yamaha Disklavier piano 

http://www.tsi.telecom-paristec
h.fr/aao/en/2010/07/08/  

Bach10 [Duan10] Includes recordings of ten pieces of J.S. 
Bach chorales performed by violin, clarinet, 
saxophone and bassoon 

http://music.cs.northwestern.e
du/data/Bach10.html  

The TRIOS 
Score-aligned 
Multitrack 
Recordings 
Dataset 
[Fritsch12] 

Contains five multitrack recordings of short 
musical extracts from trio pieces, featuring 
piano and 2 other pitched instruments 

http://c4dm.eecs.qmul.ac.uk/rd
r/handle/123456789/27  

Su dataset 
(MIREX 15) 
[Su15b] 

Contains a wide range of real-world music: 
piano solo, string quartet, piano quintet and 
violin sonata 

https://sites.google.com/site/li
supage/research/new-methodol
ogy-of-building-polyphonic-data
sets-for-amt  

 

2.2.3 Melody Extraction 
Melody is regarded as one of the most relevant aspects of music, enabling a variety of potential                 
applications: automatic transcription, melodic retrieval (query-by-humming) or as guidance for source           
separation techniques. Even though there does not seem to be a standard way to define melody, a                 
commonly accepted definition in the MIR community is the single (monophonic) pitch sequence that a               
listener might reproduce if asked to whistle or hum a piece of polyphonic music, and that a listener would                   
recognize as being the ‘essence’ of that music when heard in comparison [Poliner07b].  

Typically, research has focused on single source predominant fundamental frequency estimation, where            
the term predominant refers to the source with the highest energy, be it from the lead voice or                  
instrument in the recording. Therefore, we can say that melody extraction methods aim to obtain a                
sequence of frequency values corresponding to the pitch of the dominant melody from a musical               
recording [Salamon14]. More specifically, these systems are expected to accomplish two goals:            
estimate the correct pitch of the melody and the time intervals when the melody is actually present. 

A list of some of the most relevant algorithms for melody extraction from polyphonic signals that have                 
participated in MIREX up to 2012 can be found in [Salamon14]. Melody extraction algorithms can be                
considered as extensions of monophonic pitch trackers. In short, a pitch tracker takes an input signal,                
computes a function evaluated across a number of pitch candidates and finally some constraints are               
applied to produce the final pitch sequence. Thus, melody extraction algorithms can be classified              
according to their underlying approach [Salamon14]: 

● Salience-based approaches consist of improving the robustness of the pitch candidate function            
against the rest of existing periodicities. 

● Source separation approaches attempt to decompose the music signal into different sources in             
such a way that one of them is dominated by the melody signal. This newly obtained signal can                  
input a simpler pitch tracker to obtain the melodic line. 
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● Other approaches that do not fit into either category. 

Most proposed melody extraction methods belong to the first group, i.e., they are based on the                
estimation of a pitch salience function. The main stages of the general architecture common to the                
majority of them are described next. 

1. Preprocessing. Some works apply filters so as to enhance the frequency range where the              
melody is expected, e.g., [Salamon12], and/or a source separation method to enhance the             
melodic line and attenuate the accompaniment before the rest of the stages [Yeh12]. 

2. Spectral Transform and Processing. After frame-windowing the signal, a spectral          
representation for each frame is obtained using a number of different transforms, ranging from              
straightforward STFT [Salamon12] to other more sophisticated techniques, e.g., constant-Q          
transform [Cancela08]. Once in the spectral domain, the majority of the methods only keep the               
spectral peaks for further processing. 

3. Salience function. The core of salience-based algorithms is the salience function. The aim is to               
create a time–frequency representation of pitch salience where prominence is assigned to each             
possible candidate pitch value on a frame by frame basis. For this purpose, most methods use                
some form of harmonic summation [Salamon12, Dressler12]. Nonetheless, other methods exist,           
e.g., [Durrieu11] which uses an approach based on NMF. 

4. Tracking. Having obtained the salience function, the objective is to determine which peaks             
belong to the sought melody. Most works tend to track the melody directly from the salience                
peaks while in other studies a preliminary grouping stage is included, leading to pitch streams or                
contours [Cancela08, Salamon12]. In any case, several tracking techniques exist to select the             
final melodic sequence, e.g., [Durrieu10a, Bittner15]. 

5. Voicing. Last stage consists of detecting whether the melody is present or not on a frame by                 
frame basis. Most algorithms rely on some static or dynamic thresholds [Durrieu10a,            
Fuentes12]. Others make use of pitch contour salience distributions [Salamon12] or the contour             
probabilities produced by discriminative models [Bittner15]. 

As previously indicated, source separation based approaches present an initial melody separation stage             
followed by pitch estimation and voicing detection. The idea is to isolate the melody source as much as                  
possible making use of source separation techniques. An example of this approach is [Fuentes12],              
which uses a Probabilistic Latent Component Analysis to build a pitch salience function, followed by               
smoothing to estimate melody trajectory. In [Tachibana11], an extension of the Harmonic/Percussive            
Sound Separation algorithm is utilized.  

The larger majority of methods fall within the two approaches mentioned so far. However, some               
alternative strategies can be found. That is the case of [Poliner05], relying on a machine learning                
scheme based on a support vector machine (SVM) classifier. 

As a final comment to this section, it appears that melody extraction methods commonly yield better                
results for vocal music in comparison to instrumental pieces, since singing voice has been the main                
focus of study. According to [Bosch16b], this applies to the method proposed in [Salamon12], one of the                 
best performing algorithms in terms of overall accuracy in past MIREX competitions. 

Recently, research somewhat more oriented to the melody extraction of instrumental content has been              
carried out. In [Bosch16a], three melody extraction methods are proposed. In particular, different pitch              
tracking and voicing estimation techniques are combined with pitch salience computation based on             
source-filter modelling and harmonic summation. The proposed methods are based on combination and             
refinement of the processing blocks of some of the algorithms mentioned above [Durrieu10b, Bittner15,              
Salamon12] and a comparative evaluation with them is included. For the MedleyDB dataset, two of the                
proposed methods yield best overall accuracy while for the ORCHSET dataset, [Durrieu10b] attains best              
results. In light of the discussion, it appears that a different algorithm may be the most suitable option                  
depending on the target musical content. 
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In Table 2.7 we list some of the most important algorithms for automatically extracting the predominant                
melody from a polyphonic music recording that are publicly available. 
 

Table 2.7: Implementations of Melody Extraction algorithms 

Name/paper Implementation Link to code/repository 

[Bosch16a] Python code https://github.com/juanjobosch/SourceFilt
erContoursMelody  

[Fuentes12] Matlab code http://www.benoit-fuentes.fr/articles/Fuent
es2012_ICASSP/index.html  

[Durrieu10b] 
[Durrieu11] 

Python code https://github.com/wslihgt/separateLeadS
tereo  

[Bittner15] Python code https://github.com/rabitt/contour_classific
ation  

MEL-VAMP/ 
[Salamon12] 

Vamp Plugin http://mtg.upf.edu/technologies/melodia 

MEL-ESS/ 
[Salamon12] 

Essentia (algorithm 
PredominantPitchMelodia) 

https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/tonal/predominantpitc
hmelodia.cpp  

 

A number of datasets specifically created to test the performance of melody extraction methods has               
been published. Table 2.8 lists some of the most relevant that are freely available. 
 

Table 2.8: Datasets for evaluation of melody extraction systems 

Dataset Comments Link to data 

ADC2004 20 excerpts in genres of pop, jazz and        
opera, including real recordings,    
synthesized singing and audio generated     
from MIDI files 

http://labrosa.ee.columbia.edu/proj
ects/melody/  
 

MIREX05 13 excerpts in genres of rock, R&B, pop and         
jazz, including real recordings and audio      
generated from MIDI files 

http://labrosa.ee.columbia.edu/proj
ects/melody/  

MedleyDB 
[Bittner14] 

122 multitrack recordings (mix +     
processed stems + raw audio for music       
pieces and excerpts), where 108 of them       
have melody annotations 

http://medleydb.weebly.com/  

ORCHSET 
[Bosch16b] 

64 audio excerpts from symphonies and      
symphonic poems, ballets suites and other      
musical forms interpreted by symphonic     
orchestras 

http://mtg.upf.edu/download/datas
ets/orchset  
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MIR-1k dataset 1000 song clips from Chinese pop songs https://sites.google.com/site/unvoi
cedsoundseparation/mir-1k  

RWC Popular  
Music Database  
[Goto02] 

100 popular music style songs with mainly       
Japanese lyrics and a few English lyrics 

https://staff.aist.go.jp/m.goto/RW
C-MDB/  

 

2.3 Harmony 
In this section, we discuss about harmony related annotations. Harmony refers to the use of different                
pitches simultaneously. First we tackle the problem of chord recognition systems and then discuss              
about key detection algorithms.  

2.3.1 Chord recognition 
Chord progression defines the harmonic structure in a music piece. Determining the chords within a               
musical composition is very important for more high-level analysis of the music signal. Chord grammar               
is the backbone of harmonic analysis and can give useful information for many applications. For               
instance, chord boundaries can be used for segmentation, music search and similarity identification. In a               
musical piece, pitches and chords are arranged according to a hierarchy of stabilities called tonality. The                
pitch class with the greatest stability is called the "tonic". The collection of chroma intervals with respect                 
to the tonic form the “mode”. The combination of tonic and mode unambiguously describes a “key”. It is                  
important to note that this musical system has been created for tonal Western music, and that in                 
contemporary music for instance, the hierarchy between notes is often avoided and the tonal rules are                
not respected. Jazz music often uses tonal rules but tend to play more with seventh chords than triads. 

An audio chord recognition system returns, from the audio signal, a sequence of labels indicating the                
chords in the piece with their activation times and durations. A typical chord recognition system               
consists of two main steps. First, the audio is cut into frames that are transformed in feature vectors.                  
Then, each feature vector is mapped to a set of chord models. There are many ways to improve the                   
chord recognition results. Enhancement techniques can be applied to the feature extraction or to the               
feature mapping. 

Most of the chord recognition systems are based on chroma features. The chroma [Shepard64] is               
computed by summing the log-frequency spectrum across octaves. Then, the chroma frames are             
compared to the templates using a similarity or distance measure, and the best fit is determined. Recent                 
works concentrate on improving the feature representation through a number of different techniques.             
Reassignment techniques in the spectrogram (called Time-frequency reassignment technique - TFR)           
remap spectral energy of each spectrogram cell into another cell in order to allow much higher time and                  
frequency resolution [Khadkevich11]. 

For the classification part (e.g. the mapping step), there are many different ways for comparing chroma                
features and chord templates. Multiple distance metrics, such as cosine or euclidean distances are              
shown to yield good results [Fujishima99]. These methods provide a purely frame-wise recognition of              
chords, whereas other techniques take into account transitions between chords: Hidden Markov Model             
(HMM) has been widely used in many applications and is now the standard method in most automated                 
procedures for chord recognition [Sheh03]. This method is very interesting because it provides a way to                
take into account the non arbitrary nature of chord progression. For example, some chord sequences are                
often used in a music piece or song (for example I-IV-V-I). The state transition probabilities can be                 
specified manually (by music experts) based on harmony theory or automatically by estimating them              
from labeled data. 
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Other works use Conditional Random Field (CRF) to achieve the classification part [Wang13]. It differs               
from the HMMs in two things: First, is a discriminative model that theoretically is more suited for our                  
problem, as it is not needed to model the probability of the data for a classification task. Additionally, in                   
CRFs, each hidden state depends not just on the current observation but on the complete observation                
sequence. That gives the possibility to model the entire harmonic progression of music pieces where               
HMMs can only take into account local transitions between states. 

In order to get around the problem of audio mis-tuning, some techniques can be used when extracting                 
the pitch class profile. Khadkevich and Omologo [Khadkevich11] used two Fourier transforms of the              
signal, windowed by the same function but shifted by a number of samples. The phase change between                 
the two spectra is used to calculate the frequency of harmonic components in a more accurate way. 

Recent work utilize deep learning to learn alternative features for replacing chroma features [Zhou15]. In               
their work, authors investigate two types of architectures for the neural net, a common one in which the                  
amount of neurons is the same in every layer, and a bottleneck-shaped architecture in which the middle                 
layer has fewer neurons. Grézl et al. claim [Grézl07] that Bottleneck architecture is more suitable to                
learn high-level features than common one, and that it reduces overfitting. Moreover, following Zhou and               
Lerch results [Zhou15], it leads to better results for chord recognition than a common architecture. 

The table 2.9 lists available implementations of chord recognition systems. We discuss these             
implementations below. Most of the systems use a vocabulary of chords containing only a subset of                
basic chords. For example, the chord estimation system implemented in Essentia takes into account              
only major and minor triads consisting in a vocabulary of 24 chords. Chordata from the CLAM project                 
extend the vocabulary to more chords allowing the recognition of tetrads chords. Chordino allows user               
to define which chord can be recognized by letting him specifying chord profiles. 

Essentia proposes a chord detection algorithm for offline or real time applications called             
ChordsDetection. Combined with the HPCP algorithm that computes the Harmonic Class Profile (HPCP),             
which is analogue of chroma features, from the frequency magnitudes of the audio signal, it forms a                 
simple chord recognition system. However the modularity and simplicity of each block allows to build a                
more complicated system from it. Essentia also provides the ChordsDetectionBeats algorithm, which            
estimates chords on audio segments between each pair of consecutive beats. In addition, Essentia              
includes the ChordsDescriptors algorithm, which describes chord sequences by means of key, scale,             
histogram and rate of changes. This descriptor can be useful for computation of high-level descriptors               
such as genre. In addition, there is the TuningFrequency algorithm that estimates the tuning frequency               
of a song, given a set of spectral peaks. This tuning frequency is then passed on to the feature                   
extraction algorithm (HPCP) as a parameter. It allows the algorithm to properly assign frequencies to               
chroma bins.  

Chordino combined with NNLS Chroma forms a chord recognition system that seems to outperform              
Essentia implementation according to some informal experiments. Some pre-processing methods in the            
log-frequency spectrum give the system a way to be more robust and adjustable. Also two types of                 
chromagram are outputted, one general-purpose that covers all pitches, and one bass-specific that is              
restricted to the lower frequencies. The classification step provided by Chordino algorithm is based on a                
simple chord transcription algorithm. Chord profiles given by the user are used to calculate frame-wise               
chord similarities. Two ways of smoothing the transcription are provided: a simple chord change              
method, and a standard HMM/Viterbi approach. 

The LabROSA from Columbia University worked on Chord Recognition System. For MIREX 2010, Elis and               
Weller presented a system that uses instantaneous-frequency chroma features with a SVM classifier of              
HMM [Ellis10]. 

The CLAM project (C++ Library for Audio and Music) developed a software framework for research and                
application in the Audio and Music Domain. It offers many tools for the analysis, synthesis and                
processing of audio signals. Chordata is an application from CLAM that analyses the chords of any                
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music file. It provides some visualizations of the tonal features of the song. The processing algorithm                
inside the chord detection is based on Christopher Harte work [Harte05]. 

Alternatives of the use of chroma features for a chord recognition task has been studied. For example,                 
autoencoders gave promising results [Steenbergen14]. 

 

Table 2.9: Implementations of Chord Recognition algorithms 

Name/paper Implementation Link to code/repository 

[Gomoez06] Essentia algorithms: 
ChordsDetection, 
ChordsDetectionBeats, 
ChordsDescriptors,  
HPCP 

https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/tonal/chordsdetection.
cpp 

[Mauch10] Vamp algorithms: 
Chordino 
NNLS Chroma 

https://code.soundsoftware.ac.uk/projects
/nnls-chroma/repository  

HAMR 2014 
Jeff Scott & Alex 
Cannon  

Python http://labrosa.ee.columbia.edu/hamr2014/
proceedings/doku.php?id=simple_chord_re
cognition 

[Steenbergen14] 
(master thesis) 

Matlab https://github.com/nikste/ChordRecognitio
n 

Gregory Burlet, 
2012 
(based on Neural 
Network and HMM) 

Python https://github.com/gburlet/chordRecog 
 
 

CLAM Project C++ http://clam-project.org/index.html 

MusicBricks 
GenChords [Zen07] 

C++ http://www.ifs.tuwien.ac.at/mir/chords/do
wnload/genchords.zip 

Madmom 
[Korzeniowski16] 

Python https://github.com/CPJKU/madmom 

MART-MIR 
[Khadkevich11] 

Java https://github.com/hutm/MART-MIR 
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In the following table 2.10, we list datasets that can be used to evaluate chord recognition systems. 

Table 2.10: Datasets for evaluation of Chord Recognition systems 

Dataset Comments Link to data 

The Beatles 12 annotated albums of The Beatles. Often 
used by researchers 

http://www.isophonics.net/cont
ent/reference-annotations-beatl
es 

Zweieck 18 annotated tracks of Zweieck. Use with 
moderate confidence 

http://www.isophonics.net/cont
ent/reference-annotations-zwei
eck 

Queen 32 annotated tracks of Queen. Use with 
moderate confidence 

http://www.isophonics.net/cont
ent/reference-annotations-quee
n 

Carole King 7 annotated tracks of Carole King. Use with 
care 

http://www.isophonics.net/cont
ent/reference-annotations-carol
e-king 

Billboard 1000 professional chord transcriptions of 
popular music randomly selected from 
Billboard’s”Hot 100” charts between 1958 
and 1991 (no audio in the link) 

http://ddmal.music.mcgill.ca/bi
llboard 
 

Robbie Williams 62 annotated tracks from the first five 
albums of Robbie Williams 

http://ispg.deib.polimi.it/mir-sof
tware.html 

Rock Corpus 500 Greatest songs from the Rolling Stone 
magazine (no audio in the link) 

http://theory.esm.rochester.edu
/rock_corpus/ 

UMA-Piano 275,000 annotated recordings of piano 
chords 

http://extras.springer.com/201
3/978-1-4614-7475-3 

MIDI Aligned 
Piano Sounds 
(MAPS) 

31 GB of CD-quality of piano recordings 
(contains isolated notes, chords and pieces 
of music) 

http://www.tsi.telecom-paristec
h.fr/aao/en/2010/07/08/ 

2.3.2 Tonality 
A key recognition system follows the same approach as chord recognition systems: First it extracts a                
set of low-level features from the audio signal (typically a global pitch class profile such as HPCP). Then                  
these features are compared to a tonality model. As the tonality refers to a more global description of a                   
music than chords, a global pitch class profile is computed by averaging instantaneous ones within a                
considered segment. So in general, the main difference with a chord recognition system is the use of a                  
tonality model instead of chord templates. 

There are different approaches for finding these tonality models. A simple way to do it is to start by the                    
assumption that the most present pitch class in the piece is the tonic followed by the perfect fifth and                   
the major or minor third.  
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The Spiral Array graphical model is more sophisticated and represent hierarchy for pitches, intervals,              7

chords and keys. In this model, pitches are represented by point on a spiral. Adjacent pitches are related                  
by intervals of perfect fifths from C (arbitrary chosen as the pitch reference). More information about                
such a model can be found in Chew’s work [Chew01].  

Other ways of constructing a tonality model would be to create key profiles by corpus analysis. This                 
method is interesting because it allows the construction of genre specific models that can be more                
specialised and efficient for genre-restricted application. For example Faraldo et al. studied            
templated-based key estimation method for electronic dance music [Faraldo16]. 

Detecting key changes can be interesting for analyzing the structure of a music as pointed by Chain                 
[Chai05]. In his work, he propose a HMM-based approach for segmenting musical signals based on key                
changes and identifying key of each segment. His result show the importance of taking into account key                 
changes for the computation of key-adjusted self-similarity matrix that are commonly used for the              
automatic extraction of music structures. 

The tables 2.11 and 2.12 below list available implementations of key detection algorithms, and datasets               
that can be used to evaluate them. 

 

Table 2.11: Implementations of Key Detection algorithms 

Name/paper Implementation Link to code/repository 

[Gómez06] Essentia algorithms: 
Key 
HPCP 
KeyExtractor 

https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/tonal/key.cpp 

[Noland07] Vamp algorithm: 
Key Detector 
 

http://www.vamp-plugins.org/download.ht
ml?platform=linux64&search=key&go=Go 

KeyFinder 
[Sha'ath11] 

C++ https://github.com/ibsh/libKeyFinder 

 

 

Table 2.12: Datasets for evaluation of Key Detection systems 

Dataset Comments Link to data 

The Beatles 12 annotated albums of The 
Beatles. 

http://www.isophonics.net/content/referen
ce-annotations-beatles 

7 https://en.wikipedia.org/wiki/Spiral_array_model 
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Zweieck 18 annotated tracks of Zweieck. 
Use with moderate confidence 

http://www.isophonics.net/content/referen
ce-annotations-zweieck 

Queen 32 annotated tracks of Queen. 
Use with moderate confidence 

http://www.isophonics.net/content/referen
ce-annotations-queen 

Carole King 7 annotated tracks of Carole 
King. Use moderate confidence 

http://www.isophonics.net/content/referen
ce-annotations-carole-king 

GiantSteps 604 annotated audio files from 
Beatport 
 

https://github.com/GiantSteps/giantsteps-
key-dataset 

Robbie Williams 62 annotated tracks from the first 
five albums of Robbie Williams 

http://ispg.deib.polimi.it/mir-software.html 

KeyFinder v2 1000 annotated tracks http://www.ibrahimshaath.co.uk/keyfinder
/KeyFinderV2Dataset.ods 

Mike Henderson 119 annotated tracks with result 
estimation of some commercial 
key detection software 

http://dubspot.s3.amazonaws.com/public_
files/Key%20Detection%20Lab%20Report%
20by%20Endo.xlsx 

 

2.4 Rhythm 
In this section we give an overview of rhythm-related descriptors that are commonly extracted from               
music signals. We start with tempo and beat-tracking and then continue with meter and other rhythmic                
descriptors. 

 

2.4.1 Tempo and beat-tracking 
Tempo estimation consists in the automatic determination of the “rate of musical beats in time”               
[Gouyon06], that is to say, in the identification of the rate at which periodicities occur in the audio signal                   
that convey a rhythmic sensation. Tempo is typically expressed in beats per minute (BPM). Beat-tracking               
consists in the “extraction of beat times from musical audio signals” [Zapata14]. Both features are               
intrinsically related. Tempo is nevertheless typically used as a global descriptor for an audio signal while                
beat-tracking outputs points in time where beats take place and is not summarised in a single                
descriptor. Assuming a constant tempo, beat positions could be estimated given a tempo value and a                
tempo value could be estimated from beat positions with high reliability.  

A significant number of works within the MIR research field have been focused on the task of tempo                  
estimation. In these works, many algorithms have been proposed which typically share a number of               
commons steps. In general, tempo estimation algorithms are based on detecting onsets in an audio               
signal, either as a continuous function [e.g., Davies07, Oliveira10, Percival14] or as discrete events in               
time [e.g., Dixon01, Zapata14]. Then, a dominant period is extracted from the onsets either by analysing                
inter-onset intervals, using autocorrelation [Grosche11] or resonating filters [Klapuri06c]. This results in a             
number of tempo candidates from which one is chosen after applying different heuristics to decide               
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which is the most probable tempo (e.g., to decide tempo octave). Some approaches perform more               
complex operations such as analysing periodicities in different frequency bands [Gainza11, Wu14],            
performing source separation [Gkiokas12, Elowsson13], or using neural networks to learn features to             
use instead of usual onset information [Böck15]. 

Beat tracking algorithms (as well as tempo estimation algorithms) are typically based on the extraction               
of low-level features from the audio signal that capture changes in its energy or spectrum (novelty                
function) [Müller15]. From these energy changes note onsets can be derived and then it can be                
measured how hypothetic beat sequences match with the strong onsets. Following this idea, an optimal               
beat sequence can be obtained that matches signal’s onsets. Beat-tracking systems can also be used to                
estimate tempo [e.g., Dixon01, Davies07, Grosche11, Gkiokas12, Zapata14]. Estimated beat-positions          
are also very useful for carrying out other feature extraction tasks such as tonal analysis or structure                 
analysis [Müller15]. 

In the past years two works have been published on comparative studies of tempo estimation               
algorithms [Gouyon06, Zapata11]. These works evaluate several state-of-the-art algorithms against          
common datasets (see below). A recent paper which has been published in the context of               
AudioCommons [Font16] evaluates tempo estimation algorithms in the context of music loops. Besides             
that, MIREX includes contests for both tempo estimation and beat-tracking. These provide unified             
framework for evaluating tempo estimation and beat-tracking algorithms. The table below provides a list              
of available datasets for the tasks of tempo estimation and beat-tracking. 

 

Table 2.13: Datasets for tempo estimation and beat-tracking 

Dataset Comments Link to data 

MIREX 2006 Tempo estimation, beat-tracking. Dataset 
collected by Martin F. McKinney (Philips) 
and Dirk Moelants (IPEM, Ghent University). 
Composed of 160 30-second clips in WAV 
format with annotated tempos and beat 
positions. 

http://www.music-ir.org/evaluatio
n/MIREX/data/2006/tempo/ (user: 
tempo, password: t3mp0, only test 
data available) 

ISMIR 2004 Tempo estimation. 3199 tempo annotated 
audio clips (Loops, Ballroom and song 
excerpts). 

http://mtg.upf.edu/ismir2004/cont
est/tempoContest/ (only Ballroom 
and songs seems to be available) 

GTZAN Tempo estimation. Annotations for 1000 
audio tracks each 30 seconds long. It 
contains 10 genres, each represented by 100 
tracks. 

http://marsyasweb.appspot.com/d
ownload/data_sets/ (annotations 
only) 
 
Rhythm annotations: 
http://anasynth.ircam.fr/home/me
dia/GTZAN-rhythm 

ACM MIRUM Tempo estimation. Crowd-sourced tempo 
annotations. 

http://www.marsyas.info/tempo/  

GiantSteps Tempo estimation. 664 audio files from 
Beatport. 

https://github.com/GiantSteps/gia
ntsteps-tempo-dataset 

Freesound 
Loops 

Tempo estimation. 4000 loops downloaded 
from Freesound and with tempo annotated 

https://github.com/ffont/ismir201
6  
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by their uploaders. 

Mazurka Beat tracking. 367 Chopin Mazurkas, used in 
MIREX beat-tracking evaluations. 

(does not seem to be available any 
more online) 

SMC MIREX 
2012 

Beat tracking. 217 excerpts around 40s 
each, particularly challenging for beat 
tracking. 

http://smc.inesctec.pt/research/d
ata-2/ 
 

Beatles Beat tracking. Several annotations for 
Beatles songs (181 songs). 

http://isophonics.net/content/refe
rence-annotations-beatles 

Robbie Williams Beat-tracking. Annotations of beat positions 
for 5 Robbie Williams albums. 

http://maxzanoni.altervista.org/ch
ord-tracking/ 

 

In the context of the AudioCommons project we are particularly interested in experimenting with              
confidence measures that can estimate the reliability of audio properties annotated by the algorithms.              
Surprisingly enough, there has not been much research on confidence measures for tempo estimation              
and beat-tracking algorithms. Zapata et. al. [Zapata12] propose a confidence measure that can be used               
for tempo estimation and that is based on computing the mutual agreement between an ensemble of                
tempo estimation algorithms that take different sets of input features. Also, Grosche and Müller              
[Grosche11] describe a confidence measure for their tempo estimation algorithm based on the             
amplitude of a predominant local pulse curve (PLP curve). The PLP curve represents periodicities in the                
signal by fitting sinusoidal kernels to the novelty curves of each analysis window and performing an                
overlap-add operation. Tempo inconsistencies in the signal produce destructive interferences in the PLP,             
resulting in peaks of less amplitude. The confidence is then defined by setting an amplitude threshold                
for the PLP curve and selecting regions whose corresponding PLP peaks are above that threshold. By                
analysing tempo estimation accuracy and disregarding the regions of the analysis with bad confidence,              
the overall accuracy significantly increases. Alternatively, Percival and Tzanetakis [Percival14] suggest           
that beat strength [Tzanetakis02a] can be used to derive confidence for tempo candidates, but no               
further experiments are carried out to asses its impact on the accuracy of tempo estimation. Finally, a                 
very recent work by Quinton et. al. [Quinton16] proposes the use of rhythmogram entropy as a measure                 
of reliability for a number of rhythm features, and report a statistical correlation between measured               
entropy and the resulting accuracies for different tasks. 

To finish this section, the table below lists existing open implementations for some of the tempo                
estimation and beat-tracking algorithms mentioned above. 

 

Table 2.14: Implementation of tempo estimation and beat-tracking algorithms 

Tempo 

Name/paper Implementation Link to code/docs 

[Böck15] Madmom, “TempoDetector 
method comb” utility 

https://github.com/CPJKU/madmom 
 

[Percival14] Marsyas https://github.com/marsyas/marsyas/tree/m
aster/scripts/largeevaluators/temporefere
nceimplementation 
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Beat-tracking (and tempo based on beat-tracking) 

Name/paper Implementation Link to code/docs 

[Degara12] Essentia (RhythmExtractor2013 
algorithm) 

https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/rhythm/rhythmextract
or2013.cpp 

[Zapata12] Essentia (RhythmExtractor2013 
algorithm) 

https://github.com/MTG/essentia/blob/ma
ster/src/algorithms/rhythm/rhythmextract
or2013.cpp 

Beatroot 
[Dixon01] 

Vamp plugin (only beat tracking) https://code.soundsoftware.ac.uk/projects/b
eatrootvamp 

[Gkiokas12] Matlab code Obtained by request to authors, hosted 
(with permission) at 
https://github.com/ffont/ismir2016/tree/m
aster/algorithms/Gkiokas12  

[Grosche11] Tempogram toolbox/VAMP plugin 
implementation of tempograms 

Tempogram toolbox: 
https://www.audiolabserlangen.de/resourc
es/MIR/tempogramtoolbox/ 
 
VAMP plugin: 
https://code.soundsoftware.ac.uk/projects
/vamp-tempogram/repository  

[Oliveira10] Marsyas http://marsyas.info/doc/manual/marsyasus
er/ibt.html#ibt 

[Davies07] Vamp plugin http://vampplugins.org/plugindoc/qmvam
pplugins.html#qmtempotracker 

 

 

2.4.2 Meter and other rhythm descriptors 
According to Wikipedia, meter describes music’s rhythmic structure, “the patterns of accents heard in              
regularly recurring measures of stressed and unstressed beats [..]”. Depending on the time scale at               
which meter is analysed, Klapuri et al. [Klapuri06c] propose to differentiate between tatum             
(corresponding to the lowest metrical level, i.e., the shortest notes [Seppanen01]), the tactus (which              
corresponds to the most dominant metrical level, usually maintaining an integer relation with the tatum               
and defining the tempo of a signal), and the measure (which tends to relate to harmonic and rhythmic                  
changes). Meter is typically represented in music scores and production software using time signatures              
(e.g., 4/4, 6/8). 

Much of the existing work on automatically deriving meter from music is based on the the analysis of                  
MIDI files (i.e., symbolic music representations) rather than raw audio. Within AudioCommons we are              
interested in the determination of meter information directly from the audio signal. Some approaches for               
meter estimation consist in analysing the peaks of a periodicity function. Similarly to tempo estimation,               
a peak should be observed at the beat rate but other peaks should be observed which harmonic                 
relations from which time signature could be estimated [Brown93]. Also, given all peaks of a periodicity                
function, a probabilistic approach can be followed to find the pair of peaks which is more likely to                  
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represent beat and measure of a time signature [Dixon03]. Other approaches can take advantage of               
other features such as low-level spectral features or harmonic features to determine changes at the               
measure level for a given tempo [Goto99, Gouyon03]. Gainza [Gainza09] computes a beat-beat similarity               
matrix to pairwise compare all beats of a piece of music and find regular patterns that suggest a                  
particular meter structure. More recent work proposes the detection down-beats (typically first beats of              
a measure) as an additional feature which can lead to the identification of a time signature [Krebs13],                 
and beat-synchronous spectrum analysis to put emphasis on the temporal evolution of features             
[Varewyck13]. 

Besides tempo, beat positions and meter there are other rhythmic properties that could be automatically               
extracted from audio and that would be clearly relevant for its reuse in a creative scenario. And example                  
of such rhythmic descriptors is the “loopability” of a signal (i.e., whether the signal can be seamlessly                 
repeated to produce a continuous musically meaningful output). Roma [Roma15] proposes an approach             
based on analysis of the beat spectrum to automatically determine whether a given audio signal is                
loopable or not. The main idea is to check whether one of the prominent peaks of the beat spectrum is                    
an integer multiple of the duration of the signal, thus indication that there is an harmonic relation                 
between the duration and some rhythmic properties of the signal. 

The following tables 2.13 and 2.14 include a relation of available algorithms and datasets for meter                
detection and other rhythm features. Unfortunately, not many algorithms and datasets are available             
when compared to other music properties. 

 

Table 2.15: Implementation of meter and other rhythmic descriptors 

Name/paper Implementation Link to code/docs 

Downbeat 
tracking 

Madmom, 
“DBNDownBeatTracker” utility 

https://github.com/CPJKU/madmom 
 

Rhythm 
Transform 
[Guaus05] 

Essentia. Computes periodicity 
function based on several 
descriptors. 

http://essentia.upf.edu/documentation/ref
erence/std_RhythmTransform.html  

 

 

Table 2.16: Datasets for  meter and other rhythmic descriptors 

Dataset Comments Link to data 

Ballroom 
dataset beat 
and bar 
annotations 

Down-beat/beat tracking. Adds 
complementary annotations to the Ballroom 
section of ISMIR 2004 dataset (see Table 
2.13). 

https://github.com/CPJKU/Ballroo
mAnnotations 
 

HJDB Downbeat annotations. 235 excerpts of 
Hardcore, Jungle and Drum and Bass music 
between 30s and 2 minutes in length (all 4/4 
time signature). 

http://ddmal.music.mcgill.ca/brea
kscience/dbeat/  

Carnatic Music 
Rhythm dataset 

Annotated test corpus of 176 carnatic Indian 
music pieces (includes meter annotations). 

http://compmusic.upf.edu/carnati
c-rhythm-dataset  
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2.5 Other descriptors 
So far we have given an overview of algorithms and datasets for the most common musical properties                 
that can be described about sounds (envelope, pitch, harmony and rhythm). There are nevertheless              
many other aspects and descriptors that can be used to characterise music samples and music pieces.                
Another clear set of descriptors would be those related to timbre. The most basic amongst these                
include low-level descriptors that characterise the spectrum of audio signals. For example,            
Mel-frequency cepstral coefficients (MFCCs) are one of the most common and widely used low-level              
representations of the spectrum with applications including speech recognition and MIR classification            
tasks. These descriptors are not strictly musical properties in the sense that they do capture information                
with a perceivable meaning both for musical and non-musical audio content. In the context of the                
AudioCommons project, timbre descriptors will be dealt with in the different tasks and deliverables of               
WP5, therefore these are out of the scope of the present document. 

It can be argued that further musical aspects that can be characterised from music samples and pieces                 
bear a higher semantic meaning. That would include concepts like genre, mood or instrumentation of a                
particular recording. Some of these audio descriptors are dealt with in the following section (Sec. 3). 
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3 High-level/Semantic descriptors 
In this section we overview existing approaches to high-level/semantic annotation of music pieces and              
music samples mainly based on classification. The section is separated in a number of subsections               
covering different musical properties and includes tables with links to existing implementations of some              
of the corresponding algorithms and datasets for training and evaluating models. 

As we have noted in Section 1.2 (Methodology), we distinguish high-level annotations from low-level              
features, the former being musical concepts of a higher level of abstraction such music genre or mood                 
and which are typically computed using classification or other machine learning techniques. 

Currently, when used in many practical applications such as music recommendation and music             
similarity, low-level and mid-level music features have shown a detrimental performance when            
compared with approaches working with metadata [Slaney11]. This might be explained by the fact that               
low- and mid-level music features extracted from music audio are close to the signal, but far from the                  
way listeners do conceptualize or think about music. In contrast, it might be desirable to work on a                  
higher level of automatic description and utilize semantic concepts used by humans. It is challenging to                
try to bridge the so-called semantic gap [Aucouturier09, Celma06, Fu11], which arises from the weak               
linking between human concepts related to musical aspects and the low-level features. 

Currently, industrial systems employ manual annotation by semantic concepts done by music experts             
which significantly complicates the scalability of these systems but ensures the quality of annotations.              
As an example, Jamendo provides expert annotations for a number of semantic concepts to enhance               8

search functionality within its digital music library (genres and sub-genres, themes and moods,             
instruments, and languages). Similarly, Pandora music streaming service bases its recommendation           
engine on more than 450 semantic descriptors  annotated by musicologists. 9

Automatic classification and auto-tagging are therefore common problems considered by MIR           
researchers to address the challenge of bridging the semantic gap [Schedl14]. According to Wikipedia,              
“Classification is the problem of identifying to which of a set of categories a new observation belongs, on                  
the basis of a training set of data containing observations (or instances) whose category membership is                
known”. Typically many MIR classification tasks consider the task of assigning a single category to               10

unknown music pieces. Nevertheless, annotation with multiple categories is also possible. The latter is              
typically known as auto-tagging. Commonly, the approaches for classification and auto-tagging are            
supervised and therefore they rely on annotated training datasets. 

A number of relevant MIR tasks include: 

● genre classification [Tzanetakis02, Scaringella06, Bogdanov16] 
● music emotion / mood classification [Yang08, Laurier10] 
● music culture classification [Gómez09] 
● music instrument classification [Herrera06] 
● music/speech classification and detection [Ghodasara15] 
● semantic auto-tagging [Sordo12] 

Classification can be performed on either segment or complete track level. The former includes              
instrument recognition, where instrumentation may vary from segment to segment, while the latter is              
commonly performed for the majority of classification tasks such as genre and mood where a single                
annotation per track is required [Fu11]. 

8 https://licensing.jamendo.com/en/catalog 
9 https://en.wikipedia.org/wiki/Music_Genome_Project 
10 https://en.wikipedia.org/wiki/Statistical_classification 
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Classification process is based on the results of low-level/mid-level feature extraction and typically             
requires preliminary steps of statistical summarization and pre-processing (normalization, feature          
selection). Fu et al. [Fu11] provides an overview of audio-based features describing timbre, temporal              
evolution, rhythm, pitch and harmony, commonly used for music classification. It is noted that the choice                
of audio features is much dependent on the concrete classification problem. Support vector machines              
(SVMs) are an effective and commonly used state-of-the-art tool for various classification tasks in MIR               
[Xu03, Mandel05, Laurier09, Bogdanov11]. Apart from SVMs, researchers have also employed other            
classifier models including: 

● K-nearest neighbor (KNN) [Schnitzer11, Sordo12], 
● Gaussian Mixture Models [Slaney02, Barrington07], 
● Neural networks [Berenzweig03, Shawe-Taylor05, Hamel09]), 
● Random forest [Kursa09] 
● Naive bayesian [Zhang09] 
● Ensemble algorithms (AdaBoost [Bergstra06, Yang08], bagging [Yah14]) 
● HMMs [Chai01] 

It is worth to mention that deep convolutional neural networks have gained a large interest of the                 
research community in recent years and have been applied for music classification task. Nevertheless              
they have not been demonstrated any improvement over the existing state of the art except for music                 
instrument detection [Han16]. 

It should be noted that classifier models should be trained on many examples (music pieces or music                 
samples) in order to ensure training sample representativity and a proper between/within class             
variation. Insufficient training dataset sizes or insufficient coverage can lead to overfitting which results              
in that the trained models are inadequate for new data. This is especially important in the case of high                   
dimensionality of the input data, that is, when the number of low-level and mid-level features is                
comparable or higher to the number of training instances.  

Importantly, the methodology of evaluation of classifier models has started evolving within MIR             
community within the last years. Many researchers limit their evaluations to cross-validation on             
small-sized datasets available to the community. However, this leaves the question of the practical value               
of these classifier models for annotation, if the goal is to apply a label to any unknown musical input. It                    
has been shown that despite high cross-validation evaluation results trained models may work with              
irrelevant features and therefore learn something irrelevant to human understanding of music [Sturm14].             
Some studies have noted that cross-validation may be prone to biases and that additional evaluations               
based on independent out-of-sample data are desirable [Bogdanov16]. This further motivates the            
creation of annotated datasets from various sources, including expert annotation, social tags            
(folksonomies) and other data mined from the Internet [Porter16], as well as the improvement of low-                
and mid-level audio descriptors used by machine learning approaches. Recent research effort is focused              
on creation of an open web platform for collaborative gathering and annotation of datasets of low- and                 
mid-level audio features for various classification tasks  [Porter15].  11

We discuss specific approaches and datasets for semantic annotation below. In addition to purely              
machine learning approaches working with information resulting from audio analysis (features), many            
researchers derive audio feature sets designed specially for classification tasks. Such approaches            
therefore require access to audio collections in contrast to purely machine learning approaches which              
can be purely based on datasets of pre-computed common audio features. 

Table 3.1 summarizes existing MIR software tools and some of the commonly used machine learning               
tools that can be used for semantic annotation tasks: 

 

11 https://acousticbrainz.org 
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Table 3.1: MIR and machine learning tools for semantic annotation 

Tool Techniques Interface Link to code/documentation 

Essentia/Gaia 
[Bogdanov13] 

Classification (SVM, nearest 
neighbour). 
 
Includes  pre-processing, feature 
selection and dimensionality 
reduction. 
 
Includes pre-trained classifier 
models. 

C++, 
Python, 
CLI 
 

https://github.com/MTG/essentia
/blob/master/src/algorithms/hig
hlevel/gaiatransform.cpp 
 
https://github.com/MTG/gaia 

jMIR [McKay09] Classification (SVM, Naive 
Bayesian, decision trees, backprop 
neural network), ensemble 
algorithms (AdaBoost, Bagging). 

Includes pre-processing, feature 
selection and dimensionality 
reduction. 

Java, CLI, 
GUI 

http://jmir.sourceforge.net/manu
als/ACE_manual/ACEManual.htm
l 
 

Marsyas 
[Tzanetakis00] 

Classification (SVM, Naive 
Bayesian). 

Includes pre-processing and 
dimensionality reduction. 

C++, CLI http://marsyasweb.appspot.com/
assets/docs/manual/marsyas-us
er/kea.html#kea 
 

openSMILE 
[Eyben16] 

Classification (SVM). 

Includes pre-processing, feature 
selection.  

C++, CLI http://audeering.com/research/o
pensmile/#opensmile 

 

pyAudioAnalysis 
[Giannakopoulos1
5] 

Classification (SVM, nearest 
neighbour), regression. 

Includes pre-processing. 

Python https://github.com/tyiannak/pyA
udioAnalysis 

AcousticBrainz 
[Porter15] 

Classification (SVM). 

Includes  pre-processing, feature 
selection.  12

 
Includes pre-trained classifier 
models. 

Web https://acousticbrainz.org/datase
ts/accuracy 

 

12 Web interface for specifying pre-processing and feature selection is currently under development. 
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Scikit-Learn Classification (SVM, nearest 
neighbors, random forest, decision 
trees), regression, HMM.  

Includes pre-processing, feature 
selection and dimensionality 
reduction.  

Python  http://scikit-learn.org 

WEKA [Hall09] Classification (many), clustering 
(many), regression (many). 

Includes pre-processing, feature 
selection.  

Java, CLI, 
GUI 

http://www.cs.waikato.ac.nz/ml/
weka/ 

Shogun Machine 
Learning Toolbox 
[Sonnenburg10] 

Classification, regression, HMM. C++, CLI, 
Python, 
MATLAB, 
Java, R 

http://www.shogun-toolbox.org 

 

In the following sections we outline research and datasets about musically-relevant semantic concepts             
including genre, mood/emotion and instrumentation. 

 

3.1 Genre 
Genre classification is a common MIR task as it is believed to showcase the possibility of practical                 
applications of MIR systems despite the somewhat subjective nature of the classification. It is therefore               
a recurring task at the annual Music Information Retrieval Evaluation eXchange (MIREX).  13

Table 3.2 lists datasets available to researchers for training models for genre classification. Notably,              
some of the existing datasets (GTZAN and Latin Music Database) were largely criticized for a number of                 
flaws, including insufficient coverage, conflicting annotations, and present of duplicate training           
instances [Sturm12, Sturm15]. 

Recent cross-cross evaluation revealed poor performance of existing genre classifier models trained on             
common small-sized MIR genre datasets, when applied for large-scale annotation on “real” music             
collections [Bogdanov16]. Poor performance can be explained by insufficient low- and mid-level            
information, not capturing the essence of various music genres as well as by ill-defined taxonomy of                
music genres and the representativeness of the associated datasets. Studies reveal disagreement of             
genre annotations between different sources due to a disagreement in the underlying taxonomies             
[Scaringella06], and further research should be focused on defining a common genre taxonomy with              
well-defined categories. 

 

 

 

13 http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks 
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Table 3.2: Datasets for genre classification 

Dataset Comments Link to data 

Datasets including audio 

GTZAN 
[Tzanetakis02b] 

Includes audio retrieved from personal 
collections. 1000 track excerpts (30s.) for 10 
broad genres (100 per genre). 

http://marsyasweb.appspot.co
m/download/data_sets 
 

Music Audio 
Benchmark Data 
Set (MABDS) 
[Homburg05] 

Includes audio retrieved from an online music 
community. 1886 full tracks for 9 broad 
genres (46–490 per genre). 

http://www-ai.cs.uni-dortmund.
de/audio.html 
 

AcousticBrainz 
Rosamerica 
[Guaus09] 

In-house audio collection owned by MTG 
created by a professional musicologist. 400 
full tracks,  8 broad genres (50 tracks per 
genre). 

https://acousticbrainz.org/dat
asets/accuracy#genre_rosame
rica 
 

Latin Music 
Database [Silla08] 

Includes audio retrieved from personal 
collections and annotated by professional latin 
dance teachers. 3160 full audio tracks, 10 latin 
music genres.  

Currently offline 

MIREX Audio US 
Pop Music Genre 
Classification 

In-house audio collection held by MIREX for 
blind evaluations. 7000 track excerpts (30s.) 
for 10 genres (700 per genre). 

http://www.music-ir.org/mirex/
wiki/2015:Audio_Classification
_%28Train/Test%29_Tasks#Au
dio_US_Pop_Music_Genre_Clas
sification 

Datasets including only audio features 

MSD Allmusic 
Genre and Style 
Datasets (MAGD 
and MASD) 
[Schindler12] 

Genre and music style annotations of the 
Million Song Dataset, derived from AllMusic 
expert annotations. 433,714 tracks annotated 
by  21 broad genres;  307,790 tracks 
annotated by 210 music styles from AllMusic 
genre taxonomy. 

http://www.ifs.tuwien.ac.at/mi
r/msd/download.html 
 

Tagtraum genre 
annotations 
[Schreiber15] 

BeaTunes Genre Dataset (BGD): genre 
annotations for Million Song Dataset derived 
from beaTunes social tags  (609,865 
annotated tracks). 
 
Last.fm Genre Dataset (LFMGD):  genre 
annotations for Million Song Dataset derived 
from Last.fm social tags (340,323 annotated 
tracks). 
Combined annotations using agreement 
between sources (133,676 - 280,831 
annotated tracks). 
 

http://www.tagtraum.com/ms
d_genre_datasets.html 
 

AcousticBrainz / MAGD annotations mapped to AcousticBrainz http://labs.acousticbrainz.org 

 

 

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement N° 688382 Page 34 of 51 

 

http://marsyasweb.appspot.com/download/data_sets
http://marsyasweb.appspot.com/download/data_sets
http://www-ai.cs.uni-dortmund.de/audio.html
http://www-ai.cs.uni-dortmund.de/audio.html
https://acousticbrainz.org/datasets/accuracy#genre_rosamerica
https://acousticbrainz.org/datasets/accuracy#genre_rosamerica
https://acousticbrainz.org/datasets/accuracy#genre_rosamerica
http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks#Audio_US_Pop_Music_Genre_Classification
http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks#Audio_US_Pop_Music_Genre_Classification
http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks#Audio_US_Pop_Music_Genre_Classification
http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks#Audio_US_Pop_Music_Genre_Classification
http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_%28Train/Test%29_Tasks#Audio_US_Pop_Music_Genre_Classification
http://www.ifs.tuwien.ac.at/mir/msd/download.html
http://www.ifs.tuwien.ac.at/mir/msd/download.html
http://www.tagtraum.com/msd_genre_datasets.html
http://www.tagtraum.com/msd_genre_datasets.html
http://labs.acousticbrainz.org/


 
 
AudioCommons 
D4.1 [...] automatic annotation of music pieces and music samples 

MSD Allmusic 
Genre Dataset 
(AB-MAGD) 
[Bogdanov16] 

collection of audio features (142,969 tracks, 
11 genres). 

 

AcousticBrainz / 
Tagtraum genre 
annotations 
[Bogdanov16] 

Combined Last.fm/beaTunes genre tag 
annotations mapped to AcousticBrainz 
collection of audio features (148,960 tracks, 
13 genres). 

http://labs.acousticbrainz.org 
 

AcousticBrainz 
genre 
annotations 
[Bogdanov16, 
Porter15] 

MAGD annotations mapped to AcousticBrainz 
collection of audio features (142,969 tracks, 
11 genres). 
 
Combined Last.fm/beaTunes genre tag 
annotations mapped to AcousticBrainz 
collection of audio features (148,960 tracks, 
13 genres). 
 
764,555 tracks annotated by AllMusic genre 
tree (21 top-level genre, 1186 genres). 
 
720,597 tracks annotated by Discogs genre 
tree (15 top-level genres, 491 genres). 
 
957,529 tracks annotated by Itunes genre tree 
(38 top-level genres, 253 genres). 
 
841,571 tracks annotated by Last.fm social 
tags mapped to Discogs genre tree. 
 
810,655 tracks annotated by Last.fm social 
tags mapped to AllMusic genre tree. 
 
788,426 tracks  annotated by Last.fm social 
tags mapped to Itunes genre tree. 
 
778,964 tracks annotated by Last.fm social 
tags mapped to Beets genre tree (16 genres). 

http://labs.acousticbrainz.org 
 

 

 

3.2 Mood / Emotion 
Classification of music by mood/emotion is another important MIR task present in MIREX. The purpose               
is to classify music pieces or samples into different emotional categories like happy, sad, angry, relaxed,                
etc. [Laurier09] Similarly to genre, music moods are difficult to infer as people perceive them differently                
[Song13] and they are culture dependent. In contrast studies in psychology have proposed             
two-dimensional representation of emotion using the arousal-valence plane [Russel80] and therefore           
some MIR research works are focused on a somewhat simpler task of inferring arousal/valence values.               
To this end, linear regression [Eerola09], neural networks [Coutinho14] and support vector regressions             
[Han09] have been used to map low- and mid-level features to arousal/valence values. 
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Table 3.3 summarizes datasets available to researchers for training mood/emotion models. In contrast             
to genre, large datasets based on existing collections of audio features (such as AcousticBrainz or               
Million Song Dataset) have not been yet established, although some research is ongoing [Corona15]. 

Table 3.3: Datasets for mood/emotion classification 

Dataset Comments Link to data 

Datasets including audio 

MoodSwings Turk 
Dataset 
[Schmidt11] 

Arousal/valence annotations gathered using 
Mechanical Turk for 240 analyzed music 
excerpts (15s.) (only audio features are 
provided). 

http://music.ece.drexel.edu/re
search/emotion/moodswingst
urk 
 
 

emoMusic 
[Soleymani13] 

Arousal/valence annotations for 744 music 
excerpts (45s.) from Free Music Archive. 

http://cvml.unige.ch/database
s/emoMusic 
 

Soundtracks 
[Eerola11] 

Collaborative annotations by valence, arousal, 
tension, and moods (anger, fear, sadness, 
happiness and tenderness) for 110 film 
soundtracks excerpts (10-30s.).  

https://www.jyu.fi/hum/laitoks
et/musiikki/en/research/coe/
materials/emotion/soundtrack
s 

Emotify 
[Aljanaki15] 

400 song excerpts (1m.)  collaboratively 
annotated by 9 induced emotion categories 

http://www.projects.science.uu
.nl/memotion/emotifydata 

International 
Affective Digital 
Sounds (IADS) 

Pleasure, arousal, dominance ratings for 111 
sound snippets created for use in 
experimental investigations of emotion and 
attention 

http://csea.phhp.ufl.edu/media
/iadsmessage.html 
 

MIREX Audio 
Mood 
Classification 
Dataset 
[Hu07, Downie08] 

In-house audio collection held by MIREX for 
evaluations. 600 track excerpts collaboratively 
annotated by 5 mood clusters (120 per 
cluster). 

http://www.music-ir.org/mirex/
wiki/2015:Audio_Classification
_%28Train/Test%29_Tasks 
 

MIREX Audio 
K-Pop Music 
Classification 

In-house audio collection held by MIREX for 
evaluations. 1894 k-pop song excerpts (30s.) 
in five mood categories, annotated by a 
number of American and Korean annotators. 

http://www.music-ir.org/mirex/
wiki/2015:Audio_K-POP_Mood
_Classification 
 

AcousticBrainz 
moods [Laurier09] 
 

In-house audio collection owned by MTG. 
Contains annotations for: 
aggressive/non-aggressive (280 full tracks + 
excerpts), relaxed/non-relaxed (230 full tracks 
+ excerpts), happy/non-happy (302 full tracks 
+ excerpts), and sad/non-sad (230 full tracks 
+ excerpts) categories done by a single 
person. 

https://acousticbrainz.org/dat
asets/accuracy#mood_acousti
c 
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3.3 Instrumentation 
Instrument recognition is a challenging task that has not been yet addressed in MIREX but maintains a                 
steady interest within MIR community. For monophonic sounds, such as pitched instrument samples             
including single notes or entire musical phrases, the recognition task is reduced to assigning a single                
instrument label. It is approached as a classification task, relying on a number of state-of-the-art audio                
features describing energy (RMS, loudness), spectral features (including spectral centroid, flatness,           
roll-off, skewness, kurtosis and spread, spectral flux, spectral irregularity, zero crossing rate and             
MFCCs), harmonic features (inharmonicity, odd-to-even ratio, tristimulus) and temporal evolution of a            
signal (amplitude envelope, attack time, temporal centroid, vibrato) [Herrera06]. Again, as in the case of               
other classification tasks, SVM is a common classifier of choice [Liu10].  

A more complex task is instrument recognition in polytimbral music audio. It has not yet been addressed                 
in MIREX but it maintains a steady interest within MIR community [Fuhrmann12]. The task is to output                 
labels for all instruments present in a given polyphonic music piece, and also to locate their positions in                  
time within the piece. Multiple instruments can occur in the piece in different times or simultaneously,                
and the analysis can be done involving classification on frame level, segments, or frame clusters               
[Fuhrmann11]. Fuhrmann [Fuhrmann11] proposes an approach to detect predominant instruments in           
polyphonic music by applying SVMs. Generally, the higher polyphony, the lower accuracy is usually              
obtained in automatic instrument recognition [Kubera14]. More recent approaches allow to improve the             
recognition accuracy by applying audio segregation techniques (panning-based segregation or more           
complex source separation techniques) [Bosch12]. Finally, deep convolutional neural networks have           
been also successfully used [Han16]. 

Classification requires development of instrument taxonomies and associated datasets (Table 3.4).           
Instrument families are easier to identify than particular instruments as for latter confusions are              
common even among human listeners. Similarly to genre, research on instrument classification includes             
examples of cross-collection evaluation in order to avoid possible biases associated with typical             
cross-fold validation [Livshin03]. 

Notably, existing approaches for instrument identification consider conventional instruments, while          
many other instruments are left out of scope. In particular, this applies for electronic music, some                
genres of which are heavily characterized by using particular type of synthesizers. 

 

Table 3.4: Datasets for instrument classification 

Dataset Comments Link to data 

McGill University 
Master Samples 
collection (MUMS) 
[Eerola08] 

6000 sound samples representing most 
classical and popular musical instruments 
and a wide variety of articulation styles. 
Contains labeling errors [Eerola08].  

Available on DVD 

RWC Musical 
Instrument Sound 
Database [Goto03] 

150 instrument performances ( 3 variations 
each for 50 types of musical instruments) 

https://staff.aist.go.jp/m.goto/
RWC-MDB 

Instrument 
Recognition from 
Audio Dataset 

6705 polyphonic audio excerpts (3s.) for 
more than 2000 distinct music pieces 
annotated by 11 predominant instruments. 

http://www.mtg.upf.edu/downl
oad/datasets/irmas 
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(IRMAS) [Bosch12] 

MedleyDB 
[Bittner14] 

122 multitrack recordings (mix + processed 
stems + raw audio for music pieces and 
excerpts) annotated by instrument. 

http://medleydb.weebly.com 

Musical Instrument 
Samples Database, 
University of Iowa 
Electronic Music 
Studios 

Recordings of strings, woodwinds, brass, 
percussion and a Steinway piano, mostly 
carried out in anechoic chamber 

http://theremin.music.uiowa.e
du/MIS.html#  

 

3.3 Other semantic facets 
These is a large interest to explore descriptors for other semantic facets, including specific timbral               
categories, rhythmic and tonal patterns, production techniques, speech/music classification, and          
structure of music pieces and music samples. While speech/music classification is relatively mature             
[Williams99, El-Maleh00, Ghodasara15] and has been included in the recent editions of MIREX, other               14

topics still lack further research. A number of semantic facets are covered within AcousticBrainz project               
providing datasets and classifier models for a few generic properties of the music pieces related to                
instrumentation, such as acoustic/non-acoustic and electronic/non-electronic music, presence of voice,          
gender of vocals, and dark/bright timbre color  (Table 3.5). 

Table 3.5: Datasets for other classification tasks 

Dataset Comments Link to data 

AcousticBrainz 
Instrumentation, 
timbre & voice 

In-house audio collection owned by MTG 
containing annotations: 

Acoustic/non-acoustic music (321 full tracks + 
excerpts). 

Electronic/non-electronic music (332 full 
tracks + excerpts). 

Music with voice/instrumental music (1000 
track excerpts, 500 per class).  

Vocal music gender (male/female) (3311 full 
tracks). 

Bright/dark timbre (3000 track excerpts, 1500 
per class). 

https://acousticbrainz.org/dat
asets/accuracy 

  

14  http://www.music-ir.org/mirex/wiki/2015:Music/Speech_Classification_and_Detection 
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4 Conclusion 
In this deliverable we have given an introduction to different descriptors for the automatic annotation of                
music samples and music pieces. We have grouped them in low-level and high-level descriptors, putting               
out emphasis on providing pointers to existing implementations of some of the referenced descriptors              
as well as pointers to datasets that can be used for their training and evaluation. 

This document should serve as the basis for further research on automatic music annotation and for the                 
final definition of the descriptors to be included in the music annotation tools that will be released within                  
the AudioCommons project (deliverables D4.2, 4.3, 4.7, 4.8, D4.12 and D4.13).  
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