AudioCommons

D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical Zg 9

content

audio
o @ Ma—
commons

Deliverable D5.6

Second prototype of timbral characterisation tools for
semantically annotating non-musical content

Grant agreement nr

Project full title
Project acronym
Project duration
Work package
Due date
Submission date
Report availability
Deliverable type
Task leader
Authors

Document status

688382

Audio Commons: An Ecosystem for Creative Reuse of Audio Content
AudioCommons

36 Months (February 2016 - January 2019)

WP5

31 July 2017 (M30)

31 July 2017 (M30)

Public (X), Confidential ()

Report (), Demonstrator (X), Other ()

Surrey

Andy Pearce, Saeid Safavi, Tim Brookes, Russell Mason, Wenwu Wang, and
Mark Plumbley

Draft (), Final (x)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 1 of 15

AudioCommons

D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical

content

Table of contents

Executive Summary
1 Description of the models
1.1 Model Installation
1.1.1 MATLAB and Weka implementation
1.1.2 Python implementation
1.2 Timbral Hardness
1.2.1 General use of the Hardness model
1.2.2 Additional features of the Hardness model
1.3 Timbral Depth
1.3.1 Using the Depth model
1.3.2 Additional features of the Depth model
1.4 Timbral Brightness
1.4.1 Using the Brightness model
1.4.2 Additional features of the Brightness model
1.5 Timbral Roughness
1.5.1 Using the Roughness model
1.6 Timbral Warmth
1.6.1 Using the Warmth model
1.6.2 Additional features of the Warmth model
1.7 Timbral Sharpness
1.7.1 Using the Sharpness model
1.8 Timbral Booming
1.8.1 Using the Booming model
1.9 Timbral Reverb
1.9.1 Using the Reverb model
2 Conclusion

3 References

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

W

N N N)

10
10
10
11
11
11
12
14
15

Page 2 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

Executive Summary

This report describes the improvements and use of the demonstrator software for the eight
perceptual models that can predict the timbral characteristics of a recorded sound by analysis of the
audio file: hardness, depth, brightness, roughness, warmth, sharpness, boominess, and reverb. These
models can be used to automatically generate metadata describing the timbral properties of recorded
sounds, which can, in turn, be implemented into a search function, enabling users to filter search
results based on the timbral properties.

Improvements have been made to the models of hardness, depth, and brightness since their initial
prototypes described in Deliverable D5.2, adding new feature extraction algorithms and being
calibrated on a much larger dataset of subjective ratings. Three new models are also included in this
latest release that are yet to be evaluated: warmth, sharpness, and boominess. Evaluation of these
models will be included in the future Deliverable D5.7.

From Deliverable D5.3, it was identified that the models of metallic-nature and reverb were extremely
unreliable. Because of this, the model of metallic-nature has now been temporarily removed, and the
model of reverb has been reworked entirely.

All developed perceptual models, with the exception of reverb, are implemented using the Python
programming language. The new classification model of reverb has been developed and
implemented with MATLAB and Weka. All current models have been made available in a public
source code repository'Z.

T https://github.com/AudioCommons/timbral_models
2 https://github.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 3 of 15

https://github.com/AudioCommons/timbral_models
https://github.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1 Description of the models

The Audio Commons project aims to provide tools for the automatic annotation of audio content.
The development of these tools is spread across work packages (WP) 4 and 5, depending on the type
of properties to be annotated. WP5 aims at providing annotation tools that describe non-musical
properties; more specifically the timbral characteristics of sound effects.

In Deliverable D5.2, prototype timbral models of hardness, depth, brightness, metallic_nature, reverb,
and roughness were described. The evaluation of these, in Deliverable D5.3, identified that the models
of metallic-nature and reverb were extremely unreliable. Because of this, the model of metallic-nature
has now been temporarily removed, and the model of reverb has been reworked entirely.

This demonstrator package describes eight perceptual models for annotating the timbral attributes of
hardness, depth, brightness, roughness, warmth, sharpness, boominess, and reverb. All attributes, with
the exception of the reverb, are coded in Python and are structured into a single timbral_models
package. The reverb model was developed in MATLAB and Weka.

Section 1.1 below describes the installation, setup procedure, and dependencies required to run the
timbral models. Sections 1.2 to 1.9 then describe each model in more detail, the required inputs, the
outputs of the function, and provides some example code for running each model.

1.1 Model Installation

The developed timbre models are divided into two implementations: the reverb model in MATLAB and
Weka; and all other models implemented in Python. This section describes the installation
requirements for each implementation type.

111 MATLAB and Weka implementation

To obtain the perceived level of reverberation from audio files two separate platforms have been
used:

Matlab for feature extraction; and
Weka for modelling and evaluations.

The feature extraction functions are available from the project's GitHub page:
https://qithub.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1

All the feature extraction functions are tested in Matlab R2017a. All the dependencies and
sub-functions are included in the subfolder named “/src”. For the feature extraction, there is no need
to install extra packages or software. Only couple of parameters and file names need to be specified.

For the modelling and evaluation, the Weka toolbox is used. All the modelling and evaluation parts are
carried out using the Weka version 3.8. This software can be downloaded from:
https://www.cs.waikato.ac.nz/ml/weka/.

Weka is the Java based platform. All the requirements and documentations for installation of this
toolbox can be accessed from https://www.cs.waikato.ac.nz/ml/weka/requirements.html and
https://www.cs.waikato.ac.nz/ml/weka/documentation.html.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 4 of 15

https://github.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/requirements.html
https://www.cs.waikato.ac.nz/ml/weka/requirements.html
https://www.cs.waikato.ac.nz/ml/weka/documentation.html
https://www.cs.waikato.ac.nz/ml/weka/documentation.html

AudioCommons

D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical

content

11.2 Python implementation

The timbral models

are available from

numpy

Additionally, the code requires the use of the Essentia library. Documentation for the installation of

o

the project’s GitHub page:
https://qithub.com/AudioCommons/timbral_models. All Python-implemented models were designed
and tested in Python 2.7. These timbral models rely on the numpy, scipy, soundfile, sklearn, and
LibROSA Python packages. These can all be all be installed using the pip tool, e.g. pip install

Essentia can be found at http://essentia.upf.edu/documentation/installing.html.

All Python-based timbral models can be accessed by importing the timbral models package into
Python. At a minimum, each model requires a string that is the path and filename of an audio file.

The general usage of all Python models is shown below.

import timbral_models

sharpness
boominess

fname = '/Documents/Music/TestAudio.wav'

hardness = timbral_models.timbral_hardness(fname)
depth = timbral_models.timbral_depth(fname)
brightness = timbral_models.timbral_brightness(fname)
roughness = timbral_models.timbral_roughness(fname)
warmth = timbral_models.timbral_warmth(fname)
timbral_models.timbral_sharpness(fname)
timbral_models.timbral_booming(fname)

All timbral models have at least two optional inputs of dev_output and phase_correction,

described in the table below.

Required Input

Input type

Description

fname

String

Path and filename to the audio file to
be analysed.

Optional parameter

dev_output

Bool, default to False

When set to False, the code returns
the predicted timbral value as a
single float. When set to True
returns the value of each extracted
feature without the regression model
applied.

phase_correction

Bool, default to False

When set to True, the phase of the
left and right channels are compared
before summing to mono (for stereo
signals only). If the correlation is
less than -0.5, the phase of the right
channel is inverted before summing.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 50of 15

https://github.com/AudioCommons/timbral_models
http://essentia.upf.edu/documentation/installing.html
http://essentia.upf.edu/documentation/installing.html

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

The following subsections give more detail about the use of each timbral model, including other
optional parameters.

1.2 Timbral Hardness
The timbral hardness model (Version 0.2) is a Python implementation model. This model has

undergone improvements since the initial prototype described in Deliverable D5.2, extracting
additional features to better fit with subjective ratings of perceived hardness.

1.2.1 General use of the Hardness model

The timbral_hardness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
hardness = timbral_models.timbral_hardness(fname)

This will return the estimated hardness of the audio file as a single floating point value. Higher values
represent the audio file as sounding more hard. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

1.2.2 Additional features of the Hardness model

As well as the required filename, the timbral hardness model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

clip_output Bool, default to False. Clips the output to between 0 and 100, the
values used for training data.

max_attack_time Float, default to 0.1 Sets the maximum period after each onset
to evaluate the attack time, in seconds.

bandwidth_thresh_db Float, default to -50 Sets the threshold for estimating the
bandwidth of the audio signal, in dB.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 6 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1.3 Timbral Depth

The timbral depth model (Version 0.2) is a Python implementation model. Like with the Hardness
model, this has undergone improvements since the initial prototype described in Deliverable D5.2,
now extracting different signal features to better fit with subjective ratings of depth.

1.3, Using the Depth model

The timbral_depth function can be called from the timbral models package. The function should
be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname ' /Documents/Music/TestAudio.wav'
depth = timbral_models.timbral_depth(fname)

This will return the estimated depth of the audio file as a single floating point value. Higher values
represent the audio file as sounding more deep. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

1.3.2 Additional features of the Depth model

As well as the required filename, the timbral depth model has the following optional parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

clip output Bool, default to False. | Clips the output to between 0 and
100, the values used for training
data.

threshold db Float, default to -60 Threshold for estimating the

spectral centroid features for a
given spectrogram frame, in dB.

low frequency limit Float, default to -50 Frequency to high-pass filter the
audio signal, in Hz.

centroid_crossover_frequency [Float, defaultto 2000 | Frequency of the crossover for
calculating the spectral centroid
features, in Hz.

ratio_crossover_frequency Float, default to 500 Frequency of the crossover for
calculating the spectral ratio
features, in Hz.

db_decay_ threshold Float, default to -40 Threshold for estimating the decay
time of the signal, in dB.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 7 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1.4 Timbral Brightness

The timbral brightness model (Version 0.2) is a Python implementation model. Like with the hardness
and depth models, this has undergone improvements since the initial prototype described in
Deliverable D5.2, now extracting different signal features to better fit with subjective ratings of
brightness.

1.4.1 Using the Brightness model

The timbral brightness function can be called from the timbral models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
brightness = timbral_models.timbral_brightness(fname)

This will return the estimated brightness of the audio file as a single floating point value. Higher
values represent the audio file as sounding more bright. Although the model was trained on
subjective data ranging from 0 to 100, the output values can be beyond these scales due to the nature
of the linear regression implemented. The clip_output optional parameter can be used to limit the
returned values from 0 to 100.

1.4.2 Additional features of the Brightness model

As well as the required filename, the timbral brightness model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

clip_output Bool, default to False. | Clips the output to between 0 and
100, the values used for training
data.

threshold Float, default to 0 Threshold below which to ignore the

energy in a time window.

ratio_crossover Float, default to 2000 Crossover frequency for calculating
the HF energy ratio in Hz.

centroid_crossover Float, default to 100 Highpass frequency for calculating
the spectral centroid in Hz.

stepSize Int, default to 1024 Step size for calculating
spectrogram, in samples.

blockSize Int, default to 2048 Block size (fft size) for calculating
spectrogram.
minFreq Float, default to 20 Frequency for high-pass filtering

audio prior to all analysis in Hz.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 8 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1.5 Timbral Roughness
The timbral roughness model is in the process of being updated from the version released in D5.2.

The version contained in this demonstrator (Version 0.2) is the same as that released in D5.2,
modified to work with the new coding format.

1.5, Using the Roughness model

The timbral_roughness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
roughness = timbral_models.timbral_roughness(fname)

This will return the roughness estimated by the Vassilakis roughness formula [Vassilakis, 2007] as a
single floating point value.

The timbral_roughness model does not have any optional parameters beyond those described in
Section 1.1.2.

1.6 Timbral Warmth

The timbral_warmth model (Version 0.2) is a new addition to the timbral_models package. This
model was created based on subjective ratings of warmth over 80 stimuli.

1.6, Using the Warmth model

The timbral_warmth function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
warmth = timbral_models.timbral_warmth(fname)

This will return the estimated warmth of the audio file as a single floating point value. Higher values
represent the audio file as sounding more ‘warm’. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 9 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1.6.2 Additional features of the Warmth model

As well as the required filename, the timbral warmth model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Parameter name Parameter type Description

clip_output Bool, default to False. | Clips the output to between 0 and
100, the values used for training
data.

max_fft_frame_size Int, default to 8192 Frame size for calculating

spectrogram, in Hz.

rolloff_ratio Float, default to 0.85 Ratio for calculating the spectral
rolloff frequency, defaults to 0.85
meaning 85% of the energy sits
below this frequency.

max_WR Float, default to 12000 | Maximum allowable warmth region
frequency (3.5 times the
fundamental frequency), in Hz.

1.7 Timbral Sharpness

Another new model added to the timbral_models package is the timbral_sharpness model
(Version 0.2). This is a direct implementation of the Fastl sharpness model [Fastl and Zwicker, 1991]
and transcoded from the work of [Churchill, 2004]. This model still requires validation against
subjective data.

1.7.1 Using the Sharpness model

The timbral_sharpness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
sharpness = timbral_models.timbral_sharpness(fname)

This will return the sharpness estimated by the Fastl sharpness algorithm [Fastl and Zwicker, 1991] as
a single floating point value.

The timbral_sharpness model does not have any optional parameters beyond those described in
Section 1.1.2.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 10 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

1.8 Timbral Booming
A third new model added to the timbral_models package is the timbral_booming model (Version

0.2). This is a direct implementation of the Hashimoto booming index [Hatano, 2000; Shin, 2009],
designed to measuring the booming sensation inside moving cars.

1.8.1 Using the Booming model

The timbral booming function can be called from the timbral models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
boominess = timbral_models.timbral_booming(fname)

This will return the boominess by the Hashimoto booming index algorithm [Hatano, 2000; Shin, 2009]
as a single floating point value.

The timbral_booming model does not have any optional parameters beyond those described in
Section 1.1.2.

1.9 Timbral Reverb

The feature extraction and modelling parts of our proposed approach are implemented in Matlab and
Weka respectively. This is a newly developed approach to able us classify the audio files based on
the perceived level of reverberation (ground truth came from the human subjective listening tests).
Using this improved algorithm, the model better fits with subjective ratings of the perceived level of
reverberation.

In this approach, new sets of features have been used. Like the Deliverable D5.2 report, one of
extracted features is the RT60, but the extraction algorithm is different from what was proposed
initially in D5.2. The new approach for extracting RT60 is based on blind estimation, meaning that it
uses an audio signal as an input and not the room impulse response. This approach is based on the
Laplacian model and the detail of this algorithm are given in [Jan and Wang, 2012].

In addition to RT60, the following features are also extracted and combined as an input for the
machine learning modelling approaches:

Level of foreground stream

Level of background stream

Interaural time difference (ITD) fluctuation in the foreground
ITD fluctuation in the background

Level of the low-frequency part of the spectrum
Reverberance

Clarity

Apparent source width

Listener Envelopment

These extra features are extracted as described in [Schuitman and Vries, 2013]. Schuitman et al.
propose a method for derivation of signal based measures aiming at predicting aspects of room

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 11 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

acoustic perception from content specific signal representations produced by a nonlinear model of
the human auditory system. This approach simulates multiple aspects of human hearing to resemble
human auditory perception.

1.8.1 Using the Reverb model

The reverberation functions which extract the features are called from the main Matlab script
named Reverb AC_SS V4.

This file is in the project GitHub page and accessible from this location:
https://qithub.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1

In the main script (Reverb_AC_SS_V4.m) couple of parameters needs to be defined: the path to the
audio files; the name of the output file (the “.arff” file which will contains the extracted features);
location of the “.arff” file which contains features of test audio files; location where the Weka is
installed; and finally location and name of the trained reverberation model needs to be specified. For
example:

Run Reverb AC_SS Vi.m

Line 5: cd(' \\surrey.ac.uk\audiofiles\"');

Line 8: fid = fopen('ExtractedFeatures.txt','w');

Line 39: cd('C:\Program Files\Weka-3-8');

Line 40: -1 Logistic_classifier_Weka_D5.6.model -T
C:\Users\Fred\Desktop\temp\outputfile.arff

By running the main script an explorer will be open in the location which contains all the audio files
(the directory which is defined at line 5 of the main script) in the directory. The selected (multiple
audio files could be selected at the same time) audio files then will be analysed and all the features
will be extracted.

Extracted features will be stored in the comma separated format and in a single “.arff” file, with the
name which is specified in the main Matlab script (line 8). Extracted features then need to be aligned
and reformatted so that they can be used as an input for Weka. As it can be seen from the following
figure, in the “.arff” files relation, attribute and data need to be defined. The following example shows
that line 1 defines the relation between the features and lines 2 to 14 define the attributes. The
extracted features for each audio files is stored from line 16 onwards. By running the main Matlab
script the “.arff” file is generated for all the selected audio test files automatically.

| Brelation RTlandRTRandBL iFLandpClarandLlowandITDE ITObandpLEVandsLEV
Battribute RTL numeric

23
¢ Battribute reverb (L, H}

L9.233524e-01,2
394163e-01,2.376

»9.627%61e-01,1.450

9.013081e-01,1.583

-082710e+01,4.7038602-01,2.721431e+01, 1. 306678e+00, 4 . 192304e+01, 3. 446164e-01,6.1263072+00, 3. B6635%2-01, 5. 994641e+00, 9. BEI3E5e-01, 7
1,6.20230%e-01,1.425087e+01, 5.99530. 2.B6ET21e-01,6.045132e+00,4.1473 +6.106387e+00,9.897530e-01,7
1,1.934864e-01,1.630286e+01,1.124036e+00,2.844782e+01, 3. 460880e-01,5.858654e+00, 3. 816900e-01, 5.814528e+00, 9. 656422e-01, 7
2.401891e-01,3.550238e+01,2.241806e+00,2.942647e+01,3.20142%-01,5.844384e+00,3.913158e-01,5.862126e+00,9.6640593e-01,7

*Ex This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 12 of 15

https://github.com/saeidsafavi/timbral_models/tree/patch-1/Reverb/V1

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

To identify the prediction output, two class labels are defined during the training phase. During the
training the audio files are labelled with L or H. These labels are came from the human listening tests,
in which L means the audio file has low level of reverberation and H means High level.

The Reverberation model is trained using 420 audio files from multiple source types, and simple
logistic classifier (Weka logistic classifier with the default predefined parameters) is used for
modelling. Details about this classifier could be found in [Le Cessie and van Houwelingen, 1992].

The pre-trained reverberation model and generated “.arff” files can now be used in the Weka interface
for evaluation. Weka could be used via its own graphic interface or from the Command Prompt
environment. In this report, to make it simple for evaluation, the Weka evaluation part is also
integrated within the Matlab main script (Reverb_AC_SS_V4.m). By running the main script, the
output will be the prediction for each of the audio files.

The output of the Matlab script has a format like this:

E Editor - C\Users\Fred'Deskt ioCommonD5. \Reverb_AC 3.m
e e I ot O oy L) Reverb A SSVam X e e e
46 — end =
47 = fclose (fid) ;
48
49 - myPath=("C
50 — cd('C:\Program
51 - dosCommand= ('] ssifiers._functions.Logistic -p 0 -1 Logistic classi
52 Ssystem(['set PATH=" myPath ' && ' dosCommand])
53 - [status,cmdout] = dos(dosCommand) ; =
l< I ¥
Command Window ®
R B L e Index for audio test files.
ins];_# predicted error prediction
| £1y 1:2 2: 0.981 (
llf" 2 Ill'n 1:7 /iﬁ\ 0.9686
I.' 3 '.I 1:7 | 2:H \ 0.982
II 4 II 112 / 25H 0.958
[5| 1:2 [2:1 | 0.974 The predicted labels by
y >3 e |I £l '| P the Machine learning
T LE 2:H _—uoul
8 | 1:2 2:H 0.746 approach.
g ‘ 1:7 2:H 0.965
| 10 | 1:7 | 2:H | 0.97
11 1:2 | 2:a | 0.665
| 12 | 1:2 | 1:. | o0.979
| 13 | 1:2 '\‘ 1:1 [0.999
I". 14 | 1:2 b 11 0.753
\1s / 1:2 \ 1:1/ 0.612
f! \].fi/ 1: 2 W 0.954 -

] I b
i

In addition to test index and predicted labels there also is a column which shows the probability of
this prediction based on the predefined model. Full description of this approach and the obtained
results described fully in [Safavi, Pearce, Wang, and Plumbley, 2018].

*Ex This project has received funding from the European Union’s Horizon 2020
.« research and innovation programme under grant agreement N° 688382

Page 13 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

2 Conclusion

In this deliverable, the implementations of timbral models of hardness, depth, brightness, roughness,
warmth, sharpness, boominess, and reverb were discussed. These updated and new models will be
incorporated into the AudioCommons ecosystem as a means of automatically generating metadata
that can be used to supplement searches, making it easier for users to identify suitable sound effects.

The models of hardness, depth, and brightness have all been remodelled to better reflect subjective
ratings of the attributes. The model of roughness is currently being evaluated against newly collected
subjective data and the evaluation will be submitted as part of Deliverable D5.7. The three new
models of warmth, sharpness, and boominess will also be evaluated against a larger set of subjective
ratings in D5.7, with the models being improved and refined as necessary.

Following this, final implementations of these timbral models will be developed, improving their
computational efficiency and accuracy to their subjective attributes, for release in Deliverable D5.8.
This release will also import the reverb model into a python executable format, and include a
timbral_extractor function that will allow the predictions of each timbral attribute to be calculated
with a single function call.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 14 of 15

AudioCommons
D5.6 Second prototype of timbral characterisation tools for semantically annotating non-musical
content

3 References

Churchill, C., 2004: “MATLAB Codes, Calculating the Metrics”, Salford Innovation Research Centre,
https://www.salford.ac.uk/research/sirc/research-groups/acoustics/psychoacoustics/sound-quality-
making-products-sound-better/accordion/sound-quality-testing/matlab-codes.

Fastl, E., and Zwicker, H.,1991: “Psychoacoustics, Facts and Models”, Springer.

Hatano, S., and Hashimoto, T., 2000: "Booming index as a measure for evaluating booming sensation”,
Internoise 2000: 29th International congress and Exhibition on Noise Control Engineering, pp.
4332-4336.

Jan, T., and Wang, W., 2012: “Blind reverberation time estimation based on Laplace distribution”,
EUSIPCO. pp. 2050-2054, Bucharest, Romania.

Le Cessie, S. and van Houwelingen, J., 1992: “Ridge estimators in logistic regression”, Applied
Statistics, Vol. 41, No. 1, pp. 191-201.

Safavi, S., Pearce, A., Wang, W., & Plumbley, M. (2018). Predicting the perceived level of reverberation
using machine learning. (Accepted for) Asilomar conference on signals, systems and computers.
Pacific Grove.

Schuitman, J., and Vries, D., 2013: “Deriving content-specific measures of room acoustic perception
using a binaural, non linear auditory model”. Acoustical society of America, 133(3), pp.1572-1585.

Shin, S-H., Ih, J-G., Hashimoto, T., and Hatano, S., 2009: "Sound quality evaluation of the booming
sensation for passenger cars", Applied Acoustics, Vol. 70(2), pp 309-320.

Vassilakis, P., 2007: “SRA: A web-based research tool for spectral and roughness analysis of sound
signals”, in Proceedings of 4th Sound Music Computing (SMC), pp. 319-325.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 15 of 15

https://www.salford.ac.uk/research/sirc/research-groups/acoustics/psychoacoustics/sound-quality-making-products-sound-better/accordion/sound-quality-testing/matlab-codes
https://www.salford.ac.uk/research/sirc/research-groups/acoustics/psychoacoustics/sound-quality-making-products-sound-better/accordion/sound-quality-testing/matlab-codes
https://www.salford.ac.uk/research/sirc/research-groups/acoustics/psychoacoustics/sound-quality-making-products-sound-better/accordion/sound-quality-testing/matlab-codes

