AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

audio
o @ Ma—
commons

Deliverable D5.8

Release of timbral characterisation tools for
semantically annotating non-musical content

Grant agreement nr 688382

Project full title Audio Commons: An Ecosystem for Creative Reuse of Audio Content
Project acronym AudioCommons

Project duration 36 Months (February 2016 - January 2019)

Work package WP5

Due date 31 January 2019 (M31)

Submission date 31 January 2019 (M31)
Report availability ~ Public (X), Confidential ()
Deliverable type Report (), Demonstrator (), Other (X)

Task leader Surrey
Authors Andy Pearce, Saeid Safavi, Tim Brookes, Russell Mason, Wenwu Wang, and
Mark Plumbley

Document status Draft (), Final (X)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 1 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

Table of contents

Table of contents
Executive Summary
1 Description of the models
2 Python distribution
2.1 Installation
2.1.2 Filename calling
2.1.3 Audio sample calling
2.1.4 Additional inputs
2.2 Timbral Extractor
2.2.1 General use of the extractor
2.2.2 Additional features of the timbral extractor
2.3 Timbral Hardness
2.3.1 General use of the Hardness model
2.3.2 Additional features of the Hardness model
2.4 Timbral Depth
2.4.1 Using the Depth model
2.4.2 Additional features of the Depth model
2.5 Timbral Brightness
2.5.1 Using the Brightness model
2.5.2 Additional features of the Brightness model
2.6 Timbral Roughness
2.6.1 Using the Roughness model
2.6.2 Additional features of the Roughness model
2.7 Timbral Warmth
2.7.1 Using the Warmth model
2.7.2 Additional features of the Warmth model
2.8 Timbral Sharpness

2.8.1 Using the Sharpness model

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

W

e a N

10
10
10
11
11
11
12
12
12
12
12
13
13
13

Page 2 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.9 Timbral Booming 14
2.9.1 Using the Booming model 14

2.10 Timbral Reverb 14
1.10.1 Using the Reverb model 14

3 MATLAB/Weka implementation 15
3.1 Installation 15
3.2 Using the Reverb model 15

4 Example of model use 18
5 Conclusion 19
5 References 20

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 3 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

Executive Summary

This report describes the final release (v0.4) for the eight perceptual models that can predict the
timbral characteristics of a recorded sound by analysis an audio file: hardness, depth, brightness,
roughness, warmth, sharpness, boominess, and reverb. These models can be used to automatically
generate metadata describing the timbral properties of recorded sounds, which can, in turn, be
implemented into a search function, enabling users to filter search results based on the timbral
properties.

The package has been improved with the inclusion of an extractor function that can generate all
timbral metadata with a single function call. The package also contains a loudness normalisation
function which does not require files to be pre-loudness normalised prior to analysis. This should
make the metadata more accurate for the stimuli on freesound. Minor improvements have been
made to the models to ensure that they work with a set of over 2,000 sounds from Freesound that
caused crashes with the Version 0.3 implementations. All references to non-pip installable python
libraries have been removed, making the distribution much easier to install.

A cut-down version of the timbral reverb model has been included as a pure python distribution,
whose predictions are less accurate than those of the full model, available in MATLAB.

All current models have been made available in a public source code repository’.

1 https://github.com/AudioCommons/timbral_models

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 4 of 20

https://github.com/AudioCommons/timbral_models

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

1 Description of the models

The Audio Commons project aims to provide tools for the automatic annotation of audio content.
The development of these tools is spread across work packages (WP) 4 and 5, depending on the type
of properties to be annotated. WP5 aimed at providing annotation tools that describe non-musical
properties; more specifically the timbral characteristics of sound effects.

This demonstrator package describes the final implementation of eight perceptual models for
annotating the timbral attributes of hardness, depth, brightness, roughness, warmth, sharpness,
boominess, and reverb. This distribution is in two parts: 1) the main python distribution containing all
timbral attributes, with a cutdown version of the timbral reverb model with poorer performance;
and 2) a MATLAB and Weka distribution of the full timbral_reverb model.

Section 2 describes the python distribution, and Section 3 describes the MATLAB/Weka distribution.

2 Python distribution

All attributes are coded in python and are structured into a single timbral models package. The
timbral_reverb model’s python implementation is a cutdown version with poorer performance due
to the complexity of the full version which relies on pre-existing matlab code. The code described in
this deliverable relates to Version 0.4 for all functions.

Section 2.1 below describes the installation, setup procedure, and dependencies required to run the
timbral models. Section 2.2 introduces the timbral extractor function that can be used to extract all
timbral attributes with a single function call. Sections 2.3 to 2.10 then describe each model in more
detail, the required inputs, the outputs of the function, and provides some example code for running
each model.

2.1 Installation

All python distribution models have been written to only use PyPl-based dependencies, and as such
can be most simply be installed using pip installation from PyPI.

$ pip install timbral models

All Python-implemented models were tested in both Python 2.7 and 3.5. These timbral models rely on
the numpy, scipy, soundfile, sklearn, LibROSA, six, and PyLoudNorm Python packages. If installing
via pip, these dependencies should be installed automatically, or can be installed using the pip tool
manually, e.g. pip install numpy

Models are also available from the project’s GitHub page:
https://qgithub.com/AudioCommons/timbral_models. Editable versions of the functions can be
installed by cloning this repository and using pip’s local install function.

$ git clone https://github.com/AudioCommons/timbral models
Navigate to folder
$ pip install -e .

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 5 of 20

https://github.com/AudioCommons/timbral_models
https://github.com/AudioCommons/timbral_models
https://github.com/AudioCommons/timbral_models

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

All timbral models can be accessed by importing the timbral_models package into Python. The
timbral metadata can then be calculated for specific timbral attributes or using the timbral extractor
function.

Functions can either be called by giving a filename/path or given an array of audio samples. It is
recommended to use the filename calling method.

2.1.2 Filename calling

The timbral extractor and all individual timbral functions can be called by giving a string that is the full
path and filename of an audio file. An example of calling the timbral extractor could be:

import timbral_models

fname = '/Documents/Music/TestAudio.wav'

get all timbral attributes

timbre = timbral_models.timbral_extractor(fname)

get just the timbral depth
depth = timbral_models.timbral_depth(fname)

This package relies on the pysoundfile package for reading audio files. In the event that an audio file
cannot be read with this package, users have the option to use their own audio reading functions and
pass a numpy array to the functions as described below.

2.1.3 Audio sample calling

When calling a timbral function with audio samples, it is expected that the audio is a numpy array and
is structured in the same way as would be read by pysoundfile (i.e. dimension 1 is the audio samples,
and dimension 2 is the number of channels). With this calling method, the sample rate must be
specified by setting the fs parameter. If no sample rate is given, the function will return an error.

import timbral_models
import soundfile as st
fname = '/Documents/Music/TestAudio.wav'

read audio files
audio_samples, fs = sf.read(fname)

get all timbral attributes
timbre = timbral_models.timbral_extractor(audio_samples, fs=fs)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 6 of 20

AudioCommons

D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.1.4 Additional inputs

All timbral models (with the exception of timbral_reverb) have at least three optional inputs of

o

dev_output, phase_correction,and clip_output, described in the table below.

Required Input

Input type

Description

fname

String/numpy array

String: Path and filename to the
audio file to be analysed.

numpy array: If presented with a
numpy array, the model requires the
samplerate be specified (fs).

fs

int/float

If giving a numpy array as an input,
fs must be set to the sampling
frequency.

Optional parameter

dev_output

Bool, default to False

When set to False, the code returns
the predicted timbral value as a
single float. When set to True
returns the value of each extracted
feature without the regression model
applied.

phase_correction

Bool, default to False

When set to True, the phase of the
left and right channels are compared
before summing to mono (for stereo
signals only). If the correlation is
less than -0.5, the phase of the right
channel is inverted before summing.
Note that this does not apply to
timbral_reverb as the algorithm is
calculated on both the left and right
signals (or first two channels for
higher channel counts).

clip_output

Bool, default to False

Limits the values returned from
timbral models to between 0 and
100, the values used for training
data. Note that this does not apply
to the timbral_reverb model.

The following subsections give more detail about the use of each timbral model, including other

optional parameters.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 7 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.2 Timbral Extractor

The timbral extractor function (Version 0.4) has been designed to extract all timbral attributes with a
single function call. The function can return results for each attribute as either a python dictionary, or
list.

2.2.1 General use of the extractor

The timbral_extractor can be called from the timbral_models package. The function should be
given a string that is the path and filename of the audio file to be analysed. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
timbre = timbral_models.timbral_extractor(fname)

By default, the extractor will return the timbral attributes as a python dictionary. To return the results
as a list, call the function with the optional argument output_type="1ist’. If returning a dictionary,
each timbral attribute can be accessed with the names hardness, depth, brightness, roughness,
warmth, sharpness, boominess, and reverb. For example:

For example:

get the hardness and depth
Hardness = timbre[‘hardness’]
Depth = timbre[‘depth’]

When returning a list, the results will be in the order: hardness, depth, brightness, roughness,
warmth, sharpness, boominess, and reverb.

2.2.2 Additional features of the timbral extractor

As well as the required filename, the timbral extractor has the following variable parameters.

Optional parameter Parameter type Description

output_type String, default to | Defines the output type of the timbral
‘dictionary’ extractor. Inputs can be ‘dictionary’
or‘list’.

verbose Bool, default to True Determines if the timbral extractor
prints current evaluation progress to the
console. By default, this prints
‘Calculating attribute...’ for each
attribute. Set to False to not show
output.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 8 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.3 Timbral Hardness

The timbral hardness model (Version 0.4) is a Python implementation model. This model undergone
minor improvements to performance from the previous version described in Deliverables D5.6 and
D5.7. The model now includes automatic loudness normalisation, better error handling, and improved
efficiency.

2.3.1 General use of the Hardness model

The timbral_hardness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
hardness = timbral_models.timbral_hardness(fname)

This will return the estimated hardness of the audio file as a single floating point value. Higher values
represent the audio file as sounding more hard. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

2.3.2 Additional features of the Hardness mode|

As well as the required filename, the timbral hardness model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

max_attack_time Float, default to 0.1 Sets the maximum period after each
onset to evaluate the attack time, in
seconds.

bandwidth_thresh_db Float, default to -75 Sets the threshold for estimating the
bandwidth of the audio signal, in dB.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 9 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.4 Timbral Depth

The timbral_depth model (Version 0.4) is a Python implemented model to predict the apparent
depth of an audio file. Like with the Hardness model, this has undergone minor improvements from
the previous version and now includes automatic loudness normalisation and updates to avoid
crashes with extremely short audio files.

2.4,1 Using the Depth model

The timbral_depth function can be called from the timbral_models package. The function should
be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
depth = timbral_models.timbral_depth(fname)

This will return the estimated depth of the audio file as a single floating point value. Higher values
represent the audio file as sounding more deep. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

2.4.2 Additional features of the Depth model

As well as the required filename, the timbral_depth model has the following optional parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

threshold_db Float, default to -60 Threshold for estimating the
spectral centroid features for a
given spectrogram frame, in dB.

low_frequency limit Float, default to -50 Frequency to high-pass filter
the audio signal, in Hz.

centroid_crossover_ frequency Float, default to | Frequency of the crossover for

2000 calculating the spectral

centroid features, in Hz.

ratio_crossover_frequency Float, default to 500 Frequency of the crossover for
calculating the spectral ratio
features, in Hz.

db_decay_ threshold Float, default to -40 Threshold for estimating the
decay time of the signal, in dB.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 10 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.5 Timbral Brightness

The timbral brightness model (Version 0.4) is a Python implemented model to predict the perceived
brightness of an audio file. Like with the Hardness and Depth models, this has undergone minor
improvements from the previous versions, including automatic loudness normalisation and updates
to avoid crashes with extremely short audio files.

2.5.1 Using the Brightness model

The timbral_brightness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
brightness = timbral_models.timbral_brightness(fname)

This will return the estimated brightness of the audio file as a single floating point value. Higher
values represent the audio file as sounding more bright. Although the model was trained on
subjective data ranging from 0 to 100, the output values can be beyond these scales due to the nature
of the linear regression implemented. The clip_output optional parameter can be used to limit the
returned values from 0 to 100.

2.5.2 Additional features of the Brightness model

As well as the required filename, the timbral brightness model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

threshold Float, default to 0 Threshold below which to ignore
the energy in a time window.

ratio_crossover Float, default to 2000 Crossover frequency for
calculating the HF energy ratio in
Hz.

centroid_crossover Float, default to 100 Highpass frequency for
calculating the spectral centroid in
Hz.

stepSize Int, default to 1024 Step size for calculating

spectrogram, in samples.

blockSize Int, default to 2048 Block size (fft size) for calculating
spectrogram.
minFreq Float, default to 20 Frequency for high-pass filtering

audio prior to all analysis in Hz.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 11 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.6 Timbral Roughness

As with the other models, timbral roughness model (Version 0.4) has been updated from previous
versions. This version includes automatic loudness normalisation, updates to avoid crashes with
extremely short audio files, and linear regression to subjective ratings, meaning ratings now sit
between 0 and 100.

2.6.1 Using the Roughness model

The timbral_roughness function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
roughness = timbral_models.timbral_roughness(fname)

This will return the estimated roughness of the audio file as a single floating point value. Higher
values represent the audio file as sounding more rough. Although the model was trained on
subjective data ranging from 0 to 100, the output values can be beyond these scales due to the nature
of the linear regression implemented. The clip_output optional parameter can be used to limit the
returned values from 0 to 100.

2.6.2 Additional features of the Roughness model

As well as the required filename, the timbral roughness model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Optional parameter Parameter type Description

peak_picking threshold float, default to 0.01. Sets the minimum dynamic range
between peaks in a frequency
spectrum for the peak picking
algorithm.

2.7 Timbral Warmth

The timbral_warmth model (Version 0.4) has been updated from previous versions to have minor
improvements of efficiency and to avoid crashes with extremely short stimuli.

2.7.1 Using the Warmth model

The timbral_warmth function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
warmth = timbral_models.timbral_warmth(fname)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 12 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

This will return the estimated warmth of the audio file as a single floating point value. Higher values
represent the audio file as sounding more ‘warm’. Although the model was trained on subjective data
ranging from 0 to 100, the output values can be beyond these scales due to the nature of the linear
regression implemented. The clip_output optional parameter can be used to limit the returned
values from 0 to 100.

2.7.2 Additional features of the Warmth model

As well as the required filename, the timbral warmth model has the following variable parameters.
Each parameter has been set to provide the highest correlation with subjective ratings.

Parameter name Parameter type Description

max_fft_frame_size Int, default to 8192 Frame size for calculating
spectrogram, in Hz.

rolloff_ratio Float, default to 0.85 Ratio for calculating the spectral
rolloff frequency, defaults to 0.85
meaning 85% of the energy sits
below this frequency.

max_WR Float, default to | Maximum allowable warmth
12000 region frequency (3.5 times the
fundamental frequency), in Hz.

2.8 Timbral Sharpness

The timbral sharpness model (Version 0.4) has been updated from the previous version to now
include a linear regression to subjective ratings and automatic loudness normalisation.

2.8.1 Using the Sharpness model

The timbral_sharpness function can be called from the timbral models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
sharpness = timbral_models.timbral_sharpness(fname)

This will return the estimated sharpness of the audio file as a single floating point value. Higher
values represent the audio file as sounding more ‘sharp’. Although the model was trained on
subjective data ranging from 0 to 100, the output values can be beyond these scales due to the nature
of the linear regression implemented. The clip_output optional parameter can be used to limit the
returned values from 0 to 100.

The timbral sharpness model does not have any optional parameters beyond those described in
Section 1.1.2.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 13 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

2.9 Timbral Booming

The timbral booming model (Version 0.4) has been updated from the previous version to now include
a linear regression to subjective ratings and automatic loudness normalisation.

2.9.1 Using the Booming model

The timbral_booming function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
boominess = timbral_models.timbral_booming(fname)

This will return the estimated boominess of the audio file as a single floating point value. Higher
values represent the audio file as sounding more ‘boomy’. Although the model was trained on
subjective data ranging from 0 to 100, the output values can be beyond these scales due to the nature
of the linear regression implemented. The clip_output optional parameter can be used to limit the
returned values from 0 to 100.

The timbral_booming model does not have any optional parameters beyond those described in
Section 1.1.2.

2.10 Timbral Reverb

As described in Section 1, the python implementation of the timbral reverb model is a cutdown
version of the full MATLAB and Weka implementation (described in Section 3).

Version 0.4 is the first release of the python version of the timbral reverb model (version numbering is
for consistency with other timbral models). Unlike all previously described models, this is a
classification model based from a logistic regression. Therefore, the clip output parameter does
not affect this model.

For files with two or more channels, the algorithm is calculated on the first two audio channels and
the mean taken. As such the phase_correction parameter does not affect the model.

1.10.1 Using the Reverb model

The timbral_reverb function can be called from the timbral_models package. The function
should be given a string that is the path and filename of an audio file. For example:

import timbral_models
fname = '/Documents/Music/TestAudio.wav'
reverb = timbral_models.timbral_reverb(fname)

This will return the estimated classification of the audio file as either 0 (indicating the file does not
sound reverberant), or 1 (indicating that the file sounds reverberant).

The timbral_reverb model does not have any optional parameters.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 14 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

3 MATLAB/Weka implementation

The full version of the timbral reverb model is implemented with feature extraction in MATLAB and
modelling in Weka. The model is implemented as a classification model categorising the sound files
into ‘does not sound reverberant’ and sounds ‘reverberant’ categories. The current model better fits
with subjective ratings of the perceived level of reverberation compared to previous implementations
and the python distribution version.

New features have been extracted from the audio files to predict the perceived level of reverberance.
Like the Deliverable D5.2 report, one of extracted features is RT60, but the extraction algorithm has
been improved from what was proposed initially in D5.2. The new approach for extracting RT60 is
based on blind estimation, meaning that it uses an audio signal as an input, rather than a room
impulse response. This approach is based on the Laplacian model and the detail of this algorithm
are given in [Jan and Wang, 2012]. This is the algorithm the python distribution is based on.

In addition to RT60, the following features are also extracted and combined as an input for the
machine learning modelling approaches:

Level of foreground stream

Level of background stream

Interaural time difference (ITD) fluctuation in the foreground
ITD fluctuation in the background

Level of the low-frequency part of the spectrum
Reverberance

Clarity

Apparent source width

Listener Envelopment

These extra features are extracted as described in [Schuitman and Vries, 2013]. Schuitman et al.
propose a method for derivation of signal based measures aiming at predicting aspects of room
acoustic perception from content specific signal representations produced by a nonlinear model of
the human auditory system. This approach simulates multiple aspects of human hearing to resemble
human auditory perception.

3.1 Installation

MATLAB and Weka should both be installed according to the developers recommendations. The
MATLAB functions required to run this version can be obtained from :
https://qgithub.com/AudioCommons/timbral_models. The folder ‘MATLAB/Weka Timbral Reverb’
should be downloaded and the matlab search path set to look in this directory and all sub directories.

3.2 Using the Reverb model

The reverb model can be run by running the script Reverb_AC_SS_V4. In this script, several
parameters need to be changed prior to execution: the path to the audio files (Line 5); the filename
and location to save the output .arff file containing the extracted features (line 8); location of the
“.arff” file which contains features of test audio files; the location where Weka is installed (Line 39));
and finally the location and name of the trained reverberation model (line 40). For example:

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 15 of 20

https://github.com/AudioCommons/timbral_models

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

Run Reverb_AC_SS Vi.m

Line 5: cd('\\surrey.ac.uk/audiofiles\'); % location of the audio files

Line 8: fid = fopen('ExtractedFeatures.txt','w'); % file name for storing extracted

features

Line 39: cd('C:\Program Files\Weka-3-8'); % location of Weka installation

Line 40: -1 Logistic_classifier_ Weka D5.6.model -T
C:\Users\Fred\Desktop\temp\outputfile.arff % doc command for computing model

By running the main script an explorer will be opened in the specified audio file location (the directory
defined at line 5 of the main script). The selected audio files (multiple audio files can be selected
simultaneously) will then be analysed.

Extracted features for the selected audio files will be stored in the comma separated format and in a
single “.arff” file, specified in line 8. Extracted features are then automatically aligned and
reformatted for use in Weka. Figure 1 below shows an example of how the relationships between the
attributes and data are defined: Line 1 defines the relation between the features; and lines 2 to 14
define the attributes. The extracted features for each audio file are stored from line 16 onwards. By
running the main MATLAB script the “.arff” file is generated for all the selected audio test files
automatically.

1 Arelatien RTlandRTRandBL iFLandpClarandllowandITDE ITObandpLEVandsLEV
Battribute RTL numeric

1,9.233524e-01,2.082710e+01,4.70386%-01,2.721431e+01, 1. 306678e+00, 4 . 192304e+01, 3. 446164e-01, 6.126307e+00, 3. B66350e-01, 5. 994641e+00, 5. BRIIES
B.394163e-01,2.3769 1,6.202309e-01,1.425087e+01,5,.995392e-01,4.1861 1,2.B66721e-01,6.0451326+400,4.147940e-01, 6,106287e+00, 3. 85753 :?
1,9.627%61e-01,1.4503 1,1.9348684e-01,1.630286a+01,1.124036e+00, 2.8447 1,3.460880e-01,5.8568654e+00, 3. 616900e-01, 5.814528e+00, 4. 856422e-01, 7
€.765210e-01,9.013081e-01,1.583651e+01,2.401891e-01,3.550238e+01,2.241806e+00,2.942647e+01,3.20142%-01,5.8443842+400,3.913158e-01,5.862126e+00,9.664093e-01,7

01,7

W

Figure 1 - Example of the .arff file generated.

To identify the prediction output, two class labels were defined during the training phase: labelled with
L or H. These labels are came from the human listening tests, in which L means the audio file has low
level of reverberation and H means high level.

The Reverberation model is trained using 420 audio files from multiple source types, and simple
logistic classifier (Weka logistic classifier with the default predefined parameters) is used for
modelling. Details about this classifier could be found in [Le Cessie and van Houwelingen, 1992].

The pre-trained reverberation model and generated “.arff” files are then used by Weka to estimate the
reverberation class. Weka could be used via its own graphic interface or from the Command Prompt
environment. In this report, to make it simple for evaluation, the Weka prediction is integrated in the
MATLAB script. The output of the script will have a format as shown in Figure 2.

*Ex This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 16 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

\ oCommaon e 3m
install.m irStats.m irStats.m Multiplemfiles.m Reverb_AC_S5_VZ.m Reverb_AC_S5_V3.m +
B bl Uit L e S, o]
46 — end o -
47 - fclose (fid);
48
49 - myPath=("'C:" \Weka-3-8"):
S0 — ed('C:\Program
5= dosCommand=('java - spath weka.jar weka.classifiers.functions.Logistic -p 0 -1 Logis tic classi
52 Fsystem(['set PATH=" myPath ' && ' dosCommand]) E
5= [status, cmdout] = dos(dosCommand) ;
lt y I b
Command Window ®
R S Index for audio test files.
inst# predicted error prediction
] 1\, 1:2 2: 0.981 d
¥ ol 1:7 2:H 0.966
.'i 3 \.I 1:? 2:H \ 0.982
II 4 II 122 2:H 0.958
[s | 1:2 2:5 | 0.974 The predicted labels by
g = AR |' 2:8 | 0.963 the Machine learning
7 1::2 2:H b S
8 | 1:7 2:H 0.746 approach.
9 ‘ 1:7 2:H 0.965
| 10 | 1:7 | 2:H | 0.97
11 1:32 | 2:H 0.665
| 12 | 1:2 '|| 1:L 0.979
{ a3 | 1:2 1:L 0.999
| 14 | 1:2 1:L 0.753
I'\\J.S ’ 1:2 1:1 0.612
fx V16 1:7 1:L 0.954 i
4 \d 1 ¢

Figure 2 - Example of the output from the Reverb_AC_SS_V4.m script.

In addition to test index and predicted labels there also is a column which shows the probability of
this prediction based on the predefined model. Full description of this approach and the obtained
results described fully in [Safavi, Pearce, Wang, and Plumbley, 2018].

e This project has received funding from the European Union’s Horizon 2020
5 research and innovation programme under grant agreement N° 688382

Page 17 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

4 Example of model use

To demonstrate a use case of these models, a tool called timbral explorer was developed. An
example of the interface is shown in Figure 3 below, and can be accessed at
www.iosr.uk/audiocommons.

TIMBRAL CHENNN
EXP LO RER Select x-axis attribute

Brightness

Select y-axis attribute
Hardness

Number of files

Done, 150 sounds loaded!

o
)
o
a
=
[17]
0
»n

Click on points to listen to sounds
Click + drag to navigate the map
Scroll wheel to zoom

r This demo was made as part of the Audio Commons project:
Brlghtness www.AudioCommons.org

Figure 3 - Example of the Timbral Explorer interface.

This tool allows users to search Freesound for any source type (e.g. snare drum) in the search bar
(top right). The results are then displayed as circles whose position depends on the outputs from the
timbral models. The x and y axes can be set to any of the attributes timbral attributes. In Figure 3, the
sounds are distributed according to their Hardness (on the y-axis) and Brightness (on the x-axis).
Therefore sound towards the top of the screen will sound particularly hard, and those towards the
bottom will sound soft. Likewise, sounds towards the right of the screen will sound particularly bright,
and sounds towards the left will sound dull.

x ik This project has received funding from the European Union’s Horizon 2020
S research and innovation programme under grant agreement N° 688382

Page 18 of 20

http://www.iosr.uk/audiocommons

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

5 Conclusion

In this deliverable, the final implementations of timbral models of hardness, depth, brightness,
roughness, warmth, sharpness, boominess, and reverb were discussed. Two distributions have been
discussed: the main python distribution containing all models in a single package, and a
MATLAB/Weka distribution containing the full reverb model.

The final python distribution has been updated to accept numpy arrays as inputs, updated with an
automated loudness normalisation function, and have improved error handling capabilities. A
timbral_extractor function has also been added that allows for the computation of all timbral
features with a single function call.

The MATLAB/Weka distribution contains a more advanced version of the reverb classification model
that outperforms the python distribution.

Potential future improvements to these timbral models could be made by improving the performance
of the models to better match subjective data, or testing the applicability of the models for describing
musical pieces. Alternatively, new models of additional timbral attributes could be developed,
improving the users options for searching for sound effect in the ACE.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 19 of 20

AudioCommons
D5.8 Release of timbral characterisation tools for semantically annotating non-musical content

5 References

Jan, T., and Wang, W., 2012: “Blind reverberation time estimation based on Laplace distribution”,
EUSIPCO. pp. 2050-2054, Bucharest, Romania.

Le Cessie, S. and van Houwelingen, J., 1992: “Ridge estimators in logistic regression”, Applied
Statistics, Vol. 41, No. 1, pp. 191-201.

Safavi, S., Pearce, A., Wang, W., & Plumbley, M. (2018). Predicting the perceived level of reverberation
using machine learning. In Asilomar conference on signals, systems and computers. Pacific Grove.

Schuitman, J., and Vries, D., 2013: “Deriving content-specific measures of room acoustic perception
using a binaural, non linear auditory model”. Acoustical society of America, 133(3), pp.1572-1585.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 20 of 20

